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Abstract—This paper provides two novel contributions to
vehicular cooperative perception. Firstly, it puts forth an ap-
proach to generate the actual perception messages broadcasted
by connected autonomous vehicles. Relying on data gathered
by autonomous vehicles and originally collected for computer
vision purposes, it produces perception messages in accordance
with the standard ETSI rules. The statistical properties of the
messages are determined, showing that their size is remarkably
affected by the driving scenario and the policy adopted to
discern when an object is seen by the vehicle, and to a lesser
extent by the selection of the message generation frequency.
Secondly, the paper proposes a generative model to synthetically
replicate the sequences of perception messages. The ability of
the model to successfully capture the characteristics and the
temporal correlation of the real data is demonstrated in a
reference scenario. The model adoption is promising in large-
scale numerical simulations, where the perception messages of
many vehicles have to be faithfully reproduced.

Index Terms—Cooperative Perception Messages, Connected
Autonomous Vehicles, CPM, CAY, TimeGAN

I. INTRODUCTION

Communications play a fundamental role in the Intelligent
Transport System (ITS) domain, as vehicles, Road Side Units
(RSUs), and potentially all street “inhabitants” become in-
volved in the process of information sharing. Initially, vehi-
cles are expected to exchange messages carrying local status
information, e.g., the vehicle’s current speed and location, to
support basic safety applications. In the second development
stage, cooperative perception is foreseen, where vehicles also
broadcast what they “see”, to augment the individual percep-
tion and make autonomous driving a reality. This collective
approach aims to satisfy the requests of challenging use cases,
such as the active protection of non-connected Vulnerable
Road Users (VRUs), e.g., pedestrians and bikers, and the plan-
ning of cooperative trajectories and maneuvers of Connected
Autonomous Vehicles (CAVs), to name a few, meaningful
examples.

Cooperative sensing is a field that necessitates thorough
scrutiny to understand the relation between the wealth of
information gathered by CAVs and the advantages, along with

the cost, of sharing such information through the wireless
channel. To build a situational awareness that is as complete as
possible, Cooperative Perception Messages (CPMs) have been
introduced by the European Telecommunications Standards
Institute (ETSI) in the technical standard TS 103 324 V2.1.1
[1]. They convey a summary, in the form of a list of attributes,
of the objects (road users and obstacles) the CAV detected
with sufficient confidence. These messages are transmitted
through point-to-multipoint communications by vehicles and
also connected RSUs.

Among the papers investigating cooperative perception, [2]
identified the ETSI rules in [1] as responsible for generating
frequent messages, each providing information about a modest
number of objects. Although significant, this work relied
on simulation and assumed CAVs equipped with a single
camera sensor. The outcomes of [3] quantified the usefulness
of broadcasting cooperative perception messages at different
penetration rates of CAVs, introducing the notion of perceived
vehicular safety. Here too, the few vehicle sensors and their
characteristics were simulated. A simulative approach was
undertaken in [4] too, where CAVs equipped with two RADAR
sensors were considered. This study compared alternative
redundancy mitigation techniques, which are introduced to
avoid excessive traffic loads on the radio channel. In [5], CPMs
and the messages transmitted by VRUs were jointly examined,
the CAVs being equipped as in [4]; by simulation, the paper
determined the improvement in the rate of detection of VRUs
and in the time required to identify their presence.

In reality, autonomous vehicles are provisioned with numer-
ous cameras, LiDARs, RADARs, and high-definition maps,
which augment the vehicle’s perception via sensor fusion. A
realistic characterization of the Autonomous Vehicle (AV) as
a data source is fundamental, as it allows a sound estimate of
the requirements set on the communication channel when the
AV possesses the communication capability, that is, when it
is a CAV. This is where the first contribution of the present
work lies. Specifically, this study generates and statistically
characterizes the CPMs conveying information about the ob-



jects seen by an actual AV. To achieve this goal, two annotated
datasets collecting the scenes recorded by a fully-equipped AV
driving in different environments [6], [7] are post-processed,
and the CPMs the AV would transmit if it were a CAV are
generated in accordance with the rules proposed by ETSI. Two
simple detection policies that ascertain the objects perceived
by the CAV are also put forth. The policies identify two limit
cases and realistically quantify the range where the number of
detected objects falls; as it is this number that primarily affects
the CPM size, a true estimate of the interval of the latter is
provided. Furthermore, the study reveals that:

« the message size primarily depends on the driving sce-
nario and the object detection policy, and to a lesser extent
on the message generation frequency;

o the number of objects the CAV detects significantly
differs from the one previously published in the literature
and estimated via simulative approaches.

To overcome the limitation in size of the set of avail-
able CPMs, the present work also proposes a specific neu-
ral network, the Time-series Generative Adversarial Network
(TimeGAN), to obtain synthetic replicas of the CPMs ex-
hibiting the same statistical properties as the original ones.
The meaningful example of the highway is examined, demon-
strating that the model is successful and in the future can
be utilized in large-scale numerical simulations involving a
remarkable number of vehicles, each generating CPMs.

The rest of the paper is organized as follows: Section
II recalls the notion of cooperative perception service and
details the format of CPMs; Section III illustrates the approach
followed when generating CPMs from the actual datasets;
Section IV introduces the TimeGAN-based model and the
metrics employed to tune its parameters and evaluate its
performance; Section V discusses the results and Section VI
draws the conclusions.

II. COOPERATIVE PERCEPTION AND CPMs

Autonomous vehicles exploit different types of sensors to
gather information about the surrounding environment. Coop-
erative perception services have been proposed to share this
information with other vehicles and the roadside infrastructure,
relying on Vehicle-to-Everything (V2X) communications. This
allows the expansion of the Field of View (FoV) of the vehicle,
which not only perceives the surrounding environment through
its own equipment but becomes aware of what other vehicles
and the RSUs see. The shared information is expected to be
organized in CPMs, proposed in a dedicated ETSI standard
[1].

A CPM comprises several fields, as illustrated in Fig. 1: an
ITS-PDU header containing the protocol version, the message
type, and the ID of the ITS station (vehicle or RSU) that
generated the message; a management container reporting the
transmitter type and reference position, along with optional
segmentation information; a station data container including a
container for the originating ITS station; a sensor information
container reporting the ID, type, and detection area of each
onboard sensor which the disseminating station is equipped

ITS PDU Header

GenerationDeltaTime

CpmManagementContainer

StationDataContainer

CPM

SensorinformationContainer

PerceivedObjectContainer

CpmParameters

FreeSpaceAddendumContainer
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Fig. 1. CPM structure [1]

with; a perceived object container detailing the perceived
objects by means of their ID, type, reference position and time
of measurement, and a free space addendum container used to
describe the free space areas within the sensor detection areas.

The ITS PDU header and the management container are
mandatory, all the remaining containers are optional. More-
over, the sensor information container should be included in a
CPM if the time elapsed since the last inclusion is greater than
1 s. Considering perceived objects, an object has to be included
in a CPM if specific conditions are satisfied. In greater detail,
if the object class does not correspond to either the person or
animal class, the object inclusion rules are the following:

1) The object is new with respect to the last generated CPM;

2) The Euclidean absolute distance between the current
position of the object and its position lastly included in
a CPM exceeds 4 m;
3) The difference between the current absolute speed of the
object and its speed lastly included in a CPM exceeds
0.5 m/s;
4) The difference between the current heading of the object
and its heading lastly included in a CPM is 4°;
5) The time elapsed since the last time the object was
included in a CPM is greater than 1 s.
On the other hand, if the object class corresponds to the person
or animal class, the rules modify in:

1) The object is new with respect to the last generated CPM;

2) If the object list contains at least one object of class
person or animal that has not been included in a CPM
in the past 500 ms, all objects of class person or animal
should be included in the currently generated CPM.

As regards the dissemination of such messages, the ETSI
standard suggests that the minimum time elapsed between
consecutive CPMs should be equal to or larger than Tycncps,
100 ms < Tyencpmr < 1000 ms.

III. CPMS GENERATED BY REAL-WORLD CAVS
A. The Examined Datasets

The first examined dataset is NuScenes [6] [8], whose
scenes were sampled at a 2 Hz rate by an AV equipped



with six cameras, five RADARs, one LiDAR, one GPS, and
an Inertial Measurement Unit (IMU), while the AV traveled
in four different urban and suburban scenarios. NuScenes
provides further information drawn from the onboard sensors,
namely, the number of RADAR points from the ensemble of
RADARs and the number of LiDAR points associated with
each object, as well as the object visibility level from the
ensemble of the six cameras. Four different visibility levels are
present: [0,40%)], [40%, 60%)], [60%, 80%)], and [80%, 100%)].

The second dataset is Cirrus [7] [9], whose scenes were
recorded by an AV in an urban and a highway scenario. The
vehicle is equipped with one camera, one Gaussian LiDAR
and one uniform LiDAR, two GPSs, and an IMU. Cirrus
scenes are sampled at a 1 Hz frequency. Cirrus structure is
simpler than NuScenes, as no information about the onboard
sensors is reported. Namely, there is no indication about the
number of LiDAR points associated with an object, nor an
indication about the object visibility level. As a consequence,
every object present in this dataset is assumed to be detected
by the CAV with the highest confidence level.

Together, NuScenes and Cirrus recordings cover all the
macroscopically relevant driving environments, i.e., urban,
suburban, and highway.

B. CPM Generation and Fusion Rules

The previously described datasets were conceived for com-
puter vision purposes, i.e., to train and test the effectiveness of
neural network architectures in classifying the objects “seen”
by the AV. We exploit them for a different purpose, that is, we
process their elements to generate actual CPM sequences, that
we also term traces. To this end, we observe that each scene
is a sequence of annotated frames, where each annotation
corresponds to an object and is associated with a bounding
box. From the attributes of the bounding boxes, it is possible to
understand whether they correspond to a person or an animal;
furthermore, the dynamics of the bounding boxes allow us to
determine whether the ETSI object inclusion rules of Section
IT are satisfied. In greater detail, examining how the bounding
box of each object moves and modifies over time allows: (i)
to spot objects that enter and disappear from the vehicle’s
viewing horizon; (ii) to identify the position of every object
in the scenes. Concerning the last point, it is worth observing
that the GPS and the IMU jointly provide the position of the
barycenter of the bounding boxes in the global coordinate
system. Hence, it is possible to compute the variation in
distance and orientation undergone by every object that does
not correspond to either the person or animal class, and then
check whether the inclusion rules 2) and 4) of Section II
are verified. The speed variation is necessary to verify the
inclusion rule 3) and is computed under the hypothesis that
the objects obey the uniform rectilinear motion, an acceptable
assumption, as adjacent scenes differ by either 500 or 1000
ms.

For NuScenes, which provides a richer collection of el-
ements about each object, we also propose two alternative
object detection policies, termed relaxed and restricted. When

the relaxed policy is adopted, an object is considered detected
by the CAV if the object visibility level is greater than 40%
or there is at least one RADAR point or there is at least one
LiDAR point associated to the object bounding box. When the
restricted policy is employed, an object is considered detected
by the CAV if the object visibility level is greater than 40%
and there is at least one RADAR point and there is at least
one LiDAR point associated to the object bounding box. The
adoption of either one of the two policies differently affects
the number of objects perceived by the CAVs, on which the
inclusion rules proposed by ETSI are next applied; hence, non-
negligible changes in the CPM size are expected.

After applying the ETSI object inclusion rules to the per-
ceived objects, the actual CPM traces are obtained by exploit-
ing Vanetza [10], an open-source tool whose implementation
adheres to the ASNI1 syntax of [1]. Vanetza automatically
computes the size in bytes of the CPMs, provided the number
of objects to include in the message has been previously
determined. The analysis of the produced traces allows to
determine the traffic load the CAV places on the radio channel,
shedding some light on the bandwidth requirements of CPM
transmission.

IV. A NEURAL NETWORK MODEL TO GENERATE CPMs

For each driving environment, it would be highly desirable
to have a model of the CPM traffic generated by the CAV.
This would allow to perform large-scale numerical simulations
where the size and temporal pattern of the perception messages
are realistically re-created. A possible approach consists of
resorting to an Artificial Intelligence (AI) generative model,
properly trained through actual data. We have chosen to follow
this path, concentrating on the number of objects N;; the
CAV perceives and includes in the CPMs, as the CPM size
and the correlation between the size of consecutive CPMs
are mainly determined by this number. The number N,
evolves over time, i.e., it is a time series, which suggests the
selection of a specific instance of a neural network, the so-
called TimeGAN [11]. We resort to and properly train it, con-
sidering different combinations of its parameters, specifically,
the length of the generated temporal sequences, the batch size
adopted for the training procedure, and the number of training
iterations.

In greater detail, the TimeGAN is composed of: (i) an
embedding function; (ii) a recovery function; (iii) a sequence
generator; (iv) a sequence discriminator. The embedding func-
tion serves the purpose of moving from the feature space to the
latent space. The latter is a compressed representation of the
input data that preserves its statistical properties. The outputs
of the embedding function are named real latent codes. The
recovery function allows to move in the opposite direction, i.e.,
from the latent space to the original feature space, to obtain
the so-called reconstructions of the real latent codes. The
sequence generator takes as input random vectors chosen from
vector spaces over which known distributions are defined and
produces outputs belonging to the latent space that are denoted
as synthetic latent codes. Finally, the sequence discriminator



starts from latent codes, either real or synthetic, to produce
classifications as outputs.

To assess the validity of this solution, as in [11] we compute:
(1) the discriminative score, which quantitatively measures the
similarity between the original data and the synthetic data
generated by the TimeGAN; (ii) the predictive score, which
measures the ability of the TimeGAN to capture the temporal
correlation of the data.

We parallel these Al quantitative metrics with more tradi-
tional measures employed in probability theory; namely, we
evaluate the Kullback-Leibler (KL) divergence, D, to assess
how close the Probability Mass Function (PMF) of the number
of objects the CAV includes in the CPMs and the PMF of the
number of objects in the artificial sequences are. This indicator
is defined as
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where P(i) is the PMF computed from the actual data, Q(¢)
the PMF computed from the synthetic sequences, and [ is the
sample space. Both PMFs are a posteriori determined.

We additionally evaluate and confront the Auto Correlation
Function (ACF) of the real and artificial time series. The ACF,
which is a temporal sequence, is computed as
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V. NUMERICAL RESULTS
A. Statistical Characterization of the CPMs

We first determine the PMF of the CPM size for both
datasets. For NuScenes, we select two of the settings where
the recordings took place, namely, Singapore Holland Village
and Boston Seaport, the former being a quiet, residential
neighborhood, the latter a busy touristic district. We take them
as good references for a suburban and an urban environment,
respectively. From now on, we refer to Singapore Holland
Village as the suburban setting and to Boston Seaport as the
urban one. Moreover, we denote by X the CPM size. The
number of 20 second-long scenes recorded in the suburban
setting is equal to 85, which amounts to 26 minutes; the
scenes are 467 in the urban environment, for 156 minutes. We
generate CPMs with a periodicity equal to Tyencpy = 500
ms and 1 s. These values are compliant with the ETSI standard
and also coherent with the sampling rate of the dataset, which
is 2 Hz.

For the suburban scenario, Fig. 2(a) reports the PMF of
X when the relaxed policy is considered. Instead, Fig. 2(b)
refers to the restricted policy. The comparison between the
two figures shows the impact of the detection rule on the
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Fig. 2. PMF of X, NuScenes dataset, suburban setting.

CPM size. Shorter messages are obtained when the restricted
policy is employed, the reason being that an object is not
included in subsequent messages when it is not perceived with
a sufficiently high confidence level. The figures also show the
Tyencear impact on the PMF: if the CPM generation period is
lower, smaller CPM sizes become more likely. As a matter of
fact, a shorter interval between consecutive CPMs decreases
the probability of observing a variation in the objects’ position,
speed, and heading, which in turn leads to fewer objects being
included in the message.

For the urban scenario, the PMF of X is plotted in Figs. 3(a)
and (b), for the two distinct fusion rules. The comparison
with the former figures indicates that the setting has a notable
influence on the PMF. Owing to the large number of objects
populating the scenes in this touristic area (pedestrians, bicy-
cles, and animals), the X range is wider and the PMF is shifted
to the right with respect to the suburban scenario. These figures
also confirm that the detection rule plays a non-negligible role
in determining the actual location and shape of the PMF.

The statistical characterization of the CPM size in the urban
and suburban scenarios provides a valuable insight into the
communication requirements placed by each CAV on the radio
channel. In this regard, Table I reports the average and the
maximum CAV data rate for the NuScenes dataset considering
the same detection policies, scenarios, and Ty.,cpm Vvalues
as in Figs. 2 and 3. The average values in Table I reflect
the CPM size trends. Namely, the relaxed policy exhibits the
largest average data rates, as visible in the first and third
columns. On the other hand, the maximum data rates capture



0.6

7 cncry = 500 ms
BT yencr =1s
0.4} |
&
=
~
0.2} |
0 I_I_lll““““l‘*__A—
0 5 10 15 20 25
X /50 [bytes]
(a) Relaxed policy.
0.6
BT yencpy = 500 ms
T yencpy =18
0.4} |
&
=
~
0.2 |
0

0 5 10 15 20 25
X /50 [bytes]

(b) Restricted policy.
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the infrequent occurrences of CPMs with particularly large
sizes. Although the data rates in Table I refer to a single
CAV, they are useful for estimating the communication burden
placed on the communication channel by the future massive
deployment of CAVs and cooperative perception applications.

We next focus on the Cirrus dataset, which refers to two
scenarios in Palo Alto, California, explicitly termed urban and
highway; 55 minutes of continuous recordings are available for
the urban environment and 50 minutes for the highway. In this
case, we can only consider Tgencpy = 1 s, as the data sam-
pling rate is 1 Hz. Moreover, owing to the reduced information
Cirrus provides, no detection policies can be applied. The
comparison between Figs. 4(a) and 4(b) reveals that the PMF
of X referring to the urban scenario is less peaked and exhibits
a larger variance than the PMF referring to the highway.
This is coherent with the previous findings from NuScenes.
Notwithstanding that the CAV sensor equipment is different
in Cirrus and NuScenes, it is also interesting to confront the
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Fig. 4. PMF of X, Cirrus dataset.

PMF of X in Fig. 4(a) against the PMFs previously shown in
Figs. 3(a) and 3(b). We conclude that the results obtained from
Cirrus fall in between those obtained when the two detection
policies (relaxed and restricted) are applied to the NuScenes
objects. This corroborates the generality of our analysis and
the usefulness of its outcomes.

Hereafter, we leverage the CPM size to determine the av-
erage and maximum data rates that characterize a single CAV
in the urban and highway scenarios the Cirrus dataset refers
to. Albeit the analysis is hampered by the limited number of
available data, as well as by the lack of different detection
policies and Tyencpyr settings, the order of magnitude of the
values reported in Table II and referring to the urban scenario
is comparable to those that were obtained for Tyc,cppr = 1 s
in Table L.

Given it is primarily N,y;, the number of objects included in
each CPM which determines the message size, in what follows
we concentrate on this variable. For the sake of completeness,
Fig. 5 illustrates how N,,; affects the CPM size when a
different number of onboard sensors is examined. The solid-

TABLE 1
AVERAGE AND MAXIMUM DATA RATES, NUSCENES DATASET.
TABLE II
Tgencpm = 500 ms Tgencrm =15 AVERAGE AND MAXIMUM DATA RATES, CIRRUS DATASET.
Avg. Max. Avg. Max.
Suburban, Relaxed 4.48 kbit/s 20 kbit/s 3.2 kbit/s 10.4 kbit/s Tyencpmy =15
Suburban, Restricted | 3.12 kbit/s | 19.2 kbit/s | 2.24 kbit/s 9.6 kbit/s Avg. Max.
Urban, Relaxed 7.44 kbit/s | 42.4 kbit/s | 5.36 kbit/s | 22.4 kbit/s Urban 2.8 kbit/s | 9.6 kbit/s
Urban, Restricted 4.88 kbit/s | 41.6 kbit/s | 3.44 kbit/s | 21.6 kbit/s Highway | 2.0 kbit/s | 8.8 kbit/s
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Fig. 5. CPM size as a function of the number of included objects.

line curve refers to the case in which the CAV is equipped
with one sensor, the dashed-line curve to the case in which the
CAV is equipped with 5 sensors (as in the Cirrus dataset), and
the dot dashed-line curve to the case of 13 sensors (as in the
NuScenes dataset). It can be noticed that the X dependency on
Noyyj is linear and the CPM size significantly increases when
Noy; increases.

Next, Figs. 6(a) and 6(b) provide an interesting comparison
between the PMF of INV,;; determined from the Cirrus dataset,
and the analogous PMF obtained by simulation in [2], with
reference to the highway and urban environments. In detail,
the authors of the above study considered the vehicle equipped
with a rooftop single camera sensor, with a 360° FoV, and set
Tyencpm = 100 ms. The remarkable difference between the
two PMFs is manifest, revealing that: (i) the CAV sensors and
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sampling capability play a remarkable role in determining the
actual viewing perception of the vehicle; (ii) simulation studies
may lead to somewhat misleading conclusions, if they do not
thoroughly take into account the true CAV equipment.

B. Synthetic Sequences of Objects via TimeGAN

As regards the possibility of generating the artificial se-
quences of the number of detected objects N,p;, we next focus
on the exemplary case of the highway scenario and discuss
the results obtained by applying the TimeGAN approach to
the Cirrus dataset. Fig. 7 reports the PMF of N,,; when
Tyencpm = 1 s, as well as the PMF of the synthetic data,
corresponding to the optimal setting of the TimeGAN training
parameters [11]; namely, the sequence length is 25, the batch
size is 60, and the number of iterations is 10%. Fig. 8 further
reports the ACF of the actual sequences of the number of
objects included by the CAV in the CPMs, on a 20-second long
window, as well as its counterpart for the synthetic sequences.

The obtained KL divergence is 0.0265, the discriminative
score is 0.0289 and the predictive score is 0.00521; these are
the lowest, i.e., the best values we obtained for the examined
range of training parameters. A good match is observed in
both figures, allowing us to conclude that the generative model
can successfully be employed to obtain temporal sequences
of objects, whose number and temporal correlation closely
resemble those observed in real recorded sequences.



VI. CONCLUSIONS AND FUTURE WORK

This paper has presented the first study on CPMs generated
from real data gathered by AVs traveling in different settings.
It has evidenced how datasets conceived for computer vision
purposes can be successfully employed to draw accurate
information about the data traffic the CAV generates. Through
suitable adjustments, the proposed approach can be applied to
other annotated datasets to further enrich the analysis.

The investigation of the CPM sequences has revealed that
the CPM size is heavily influenced by the level of confidence
that characterizes the sensor fusion policy and by the driving
scenario, which determines the numerosity of the objects the
CAV sees. The examined values of the CPM generation peri-
ods were consistent with the actual sampling rate of the scenes
and have been shown to impact the message size to a lesser
extent. This work has also disclosed the significant distance
between previously published data obtained by simulation and
those provided by the current realistic analysis.

Lastly, a TimeGAN has been put forth, to model the CAV
behavior when transmitting CPM sequences. In the reference
highway setting, the generative model satisfyingly replicates
the statistical distribution of the number of objects included
in the CPMs and captures the temporal correlation between
these objects. It is a promising outcome that shows the model
is suitable for performing large-scale numerical simulations,
where the CPMs simultaneously transmitted by many CAVs
have to be generated.

In future works, plans are to extend the current results
validating the generative model in different driving environ-
ments, also contrasting its behavior to alternative Al-based and
statistical methods.
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