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Rings for Privacy: An Architecture for Large
Scale Privacy-Preserving Data Mining

Maria Luisa Merani*“, Daniele Croce ", and llenia Tinnirello

Abstract—This article proposes a new architecture for privacy-preserving data mining based on Multi Party Computation (MPC)

and secure sums. While traditional MPC approaches rely on a small number of aggregation peers replacing a centralized trusted entity,
the current study puts forth a distributed solution that involves all data sources in the aggregation process, with the help of a single
server for storing intermediate results. A large-scale scenario is examined and the possibility that data become inaccessible during

the aggregation process is considered, a possibility that traditional schemes often neglect. Here, it is explicitly examined, as it might be
provoked by intermittent network connectivity or sudden user departures. For increasing system reliability, data sources are organized
in multiple sets, called rings, which independently work on the aggregation process. Two different protocol schemes are proposed and

their failure probability, i.e., the probability that the data mining output cannot guarantee the desired level of accuracy, is analytically
modeled. The privacy degree, the communication cost and the computational complexity that the schemes exhibit are also
characterized. Finally, the new protocols are applied to some specific use cases, demonstrating their feasibility and attractiveness.

Index Terms—Privacy, secret sharing, data mining, secure multi-party computation, C-means

1 INTRODUCTION

OWADAYS, the problem of privacy-preserving data mining
N is crucial for extracting knowledge from users” data while
protecting their privacy. On one side, contemporary societies
are witnessing an unprecedented availability of data, includ-
ing personal information from social networks, environmental
measurements from smart sensors, state information from Sys-
tems of different complexity, such as autonomous cars, robots,
domestic appliances, Internet of Things (IoT) sensors. On the
other side, data owners are often independent individuals or
entities that are likely not to trust each other, even if the value
coming from data aggregation could be beneficial for all the
actors involved in the process of data knowledge extraction.
The situation is even more critical for personal data, as new
bylaws such as the General Data Protection Regulation
(GDPR) of the European Union [1], impose precise obligations
on data processing and control.

Although, intuitively, one might expect that processing
the informational elements provided by multiple users
requires to access the data of each source, a very interesting
solution that overcomes such privacy issue is represented
by Multi-Party Computation (MPC). Indeed, MPC allows a
set of parties to jointly compute a mutually agreed function
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of their data, while keeping their input data private. Only
the final result becomes known to all participants, under
some conditions on the maximum number of colluding par-
ticipants trying to attack the system.

Despite the fact that MPC has been considered impractical
for many years, because control on data comes at the price of
increasing the storage requirements and the overhead of com-
munication among participants, recent years have witnessed
the deployment of several real systems based on MPC. Exam-
ples include the set-up of an auction mechanism in Denmark
relying on three collaborative parties (rather than on the usual
centralized trusted entity) [2], as well as a system for tax fraud
detection in Estonia based on the correlation of multiple data
sources provided by independent databases [3]. A limitation
of current deployments is still the usage of few aggregation
parties: for instance, in the auction case, all bidders have
to trust that at least two out of the three parties running the
auction process are not malicious.

Instead, this paper investigates on the possibility of build-
ing a distributed architecture for large-scale MPC, where both
the number of data sources and also the number of data aggre-
gators is large [4]. In greater detail, it is assumed that each
node providing data also works as an aggregation peer, with
the only help of a server storing the intermediate gathered
results. Two alternative MPC schemes based on secure sums
are proposed, which exploit partial collections and which are
completely distributed, therefore necessitating no trusted
servers. Additionally, data sources are logically organized in
multiple groups called rings, which independently perform
partial aggregations. This increases the resiliency of the
schemes, that effectively cope with data losses.

The contribution that the paper offers is two-fold:

1) first, it introduces a novel metric to measure the reli-
ability of privacy preserving schemes in the presence
of node failures, i.e., when users unpredictably depart
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or experience intermittent network connectivity. This
metric is the failure probability, defined as the probabil-
ity that the data mining scheme leads to inaccurate
estimates because of data losses. Indeed, previous
studies usually considered the network perfectly reli-
able [5], [6], or claimed that links can be insecure [4].
Unlike these investigations, the current work assumes
data sources are not always available, and lines up
with [20], that considers node dropouts as common
events.

2)  Second, the present paper analytically determines the
failure probability that the two proposed schemes
exhibit. Moreover, their privacy degree is evaluated,
as well as their communication and computational
cost. In doing so, a complete theoretical picture of the
performance the schemes achieve is offered, in terms
of communication cost and computational complexity,
as well as privacy and resiliency to failures.

The proposed aggregation protocols are applied to some
specific use cases and the findings can be summarized as
follows: there exists a trade-off between the failure probabil-
ity and the privacy degree that the users are guaranteed by
the two solutions: the scheme that better protects sensitive
data exhibits the highest failure probability. Furthermore,
the scheme that is more robust against data losses also dis-
plays the highest communication cost.

The rest of the paper is organized along these lines:
Section 2 presents some related work and Section 3 provides
an introductory background on secure MPC protocols. The
privacy-preserving schemes are put forth in Section 4. Their
privacy level, robustness, communication and computa-
tional costs are analytically determined in Sections 5, 6 and
7, respectively. The proposed protocols are applied to dis-
tinctive use cases in Section 8 and their behavior is analyzed
in Section 9; the conclusions are gathered in Section 10.

2 RELATED WORK

For privacy-preserving data mining [7], several approaches
exist: (i) altering the data before their delivery to the data
miner in such a way that the aggregation results are not com-
promised; (ii) relying upon more sites that have to cooperate
to obtain the mining results; (iii) resorting to a machine learn-
ing setting where many users collaboratively train a model
without exposing their data, as the recently proposed feder-
ated learning approach indicates. Data alteration solutions
may introduce mining errors, if the alteration is based on ran-
dom noise [9], while federated learning may result extremely
complex in case of homomorphic data encryption and often
requires the presence of a central orchestration server [8].
Instead, this work undertakes the pathroad delineated by
point (ii) above, and sits among the studies on distributed
cooperation mechanisms, that employ secure MPC to warrant
users the desired privacy.

The first work proving the feasibility of secure two-party
computation is the seminal paper by Yao [10]; the approach
has been generalized to multiple parties and different adver-
sary models by Goldreich et al. [11], to arithmetic circuits
rather than logic circuits by Ben-Or et al. [12], and to any lin-
ear secret sharing scheme by Cramer et al. [13]. Secure com-
putation has been commonly considered too arduous for
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TABLE 1

Comparison of Related Works and Their Main Characteristics

Scheme Circuit No. of nodes TTP Security
P4P [6] Hybrid many Yes Active
Yao [10] Boolean 2 No Passive
GMW [11] Bool./arithm. many No Active
BGW [12] Arithmetic many No Active
Cramer [13] Arithmetic many No Active
FairMP [14] Boolean many Emulated Passive
VIFF [15] Arithmetic many No Passive
Sharemind [16] Hybrid 3 Yes Passive
Erkin [18] Arithmetic many No Passive
Vaidya [19] Arithmetic many Yes Passive
Bonawitz [20] Arithmetic many Yes Active

practical applications: this changed with an implementation
of Yao’s protocol that Ben-David et al. have generalized in
the FairplayMP framework [14]. In this respect, VIFF by
Damgard et al. is another notable example [15]: it is built for
asynchronous networks with no notion of rounds, i.e., it
guarantees security when calculations are performed in arbi-
trary order. Similarly to [15], the current work assumes that
network nodes are not synchronized: however, its logical
ring-based architecture allows to simplify the secure compu-
tation protocols, as messages are sent from one node to the
next downstream user, thus inherently guaranteeing sequen-
tial operations. MPC has also been investigated in Share-
mind [16] and P4P [6], by Bogdanov and Duan, respectively.
Yet, both works enforce solutions where very few sites col-
lect the users’ sensitive data: unfortunately, few and well-
known miners might cooperate against users; on the con-
trary, in the proposed distributed scenario finding colluding
mates can turn out very difficult or even impossible. Exten-
sions of MPC schemes introduce the possibility to work
simultaneously on multiple data or to verify data integrity of
the shares and/or keys. A survey of the approaches pro-
posed so far, which also quantifies their computation and
transmission costs, is provided in [17].

Privacy-preserving clustering is also faced in [18] and
[19]: these strategies focus on a specific clustering technique
and introduce burdensome cryptographic tools besides
secure sums. In [18], Erkin ef al. used homomorphic encryp-
tion to privately process the data, while in [19], Vaidya et al.
employed secure circuits for comparing data vectors under
random permutations. Table 1 summarizes the main charac-
teristics of the above approaches, reporting: (i) number of
nodes; (ii) presence of Trusted Third Parties (TTP); (iii) type
of guaranteed security, that is, whether semi-honest (pas-
sive) or malicious (active) attacks are examined. However,
differently from the current study, none of the protocols in,
e.g., [6], [16], [18] or [19] pay due attention to the reliability
issue, that is, to the possibility that users suddenly depart
from the network and their data are no longer available.

Finally, the federated learning solution in [20] deserves a
mention, as its authors are well-aware of the issues raised by
data that become inaccessible during the mining process and
explicitly refer to dropped-out users. Yet, their work has no
notion of failure probability, which we first introduce in the
current study. Moreover, their system is heavily based on the
presence of a common server. Rather, our solution preserves
privacy in a totally distributed manner, in that conceptually



1342

Fig. 1. SSC implementation example.

resembling the fully decentralized/peer-to-peer approach
mentioned in [19].

3 BACKGROUND

A succinct overview of Secure Multi-Party Computation
(SMPCQ) is first provided, in order to ease the understanding
of the proposal. SMPC is a field of cryptography devised to
compute a function f(si, s, ...,sy) of the data s;’s (named
secrets from now on) collected from N independent nodes,
without revealing any information except for the final value
of the function. Secure Sum Computation (SSC) [21] is an
SMPC example, where the secrets of N parties are privately
summed. To implement it in a distributed fashion, one can
refer to the scenario depicted in Fig. 1, where each node
owns its secret s;. Assuming that the final sum to be com-
puted, 3>V s;, lies in the range [0, ¢), which is known, the
protocol works as follows:

1) a designated node, e.g., node 1 in Fig. 1, creates a
random value 7 uniformly distributed in [0, ¢), com-
putes 71 = (r + s;)mod g and sends it to node 2;

2) node 2 computes 1, = (r1 + sg)mod ¢ and sends it to
node 3.

3) the generic, ith node computes 7; as (r;_1 + s;) mod q
and sends it to the next downstream node;

4) last node sends ry = (r+ YV s;) mod ¢ to node 1,
which subtracts the initial random value 7 and deter-
mines the sum Y | s;.

The SSC scheme is asynchronous: it is the reception of the
message from node i — 1 that triggers node i to provide its
data. Moreover, the solution is robust for the honest-but-curi-
ous attack model, i.e., when users try to draw some informa-
tion through their observations, but they still adhere to the
protocol rules. However, it is not secure in case of malicious
attacks: if nodes ¢ — 1 and ¢ + 1 collude against node i, secret
s; is revealed; similarly, if nodes ¢ — 1 and i are violated,
secret s; is disclosed too.

An interesting solution to solve this problem is to privately
compute the sum employing a linear secret sharing (SS)
scheme. An SS scheme is a cryptographic method that allows
to split each secret s; into N, multiple shares sh(s;), sha(s;),
..., shy,(s;) and to recover the original secret if a given num-
ber of shares is available. SSC architectures that employ SS
methods rely upon the presence of N, computation peers,
which receive different shares of the data provided by the
nodes. Each computation peer aggregates the shares that it
obtains and makes the resulting sum of shares available to,
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e.g., a central server. The computation is still secure, owing to
the homomorphic property that stems from the linearity of the
share generation method: as the share of the sum of two
secrets s; + s; is equal to the sum of their shares, the result of
any linear function f(s;, s;) can be computed collecting a suffi-
cient number of sums of shares k, without disclosing the origi-
nal secrets. Hence, for SSC the central server can recover the
sum of the secrets s, 59, ... sy; depending on the generation
scheme, the number of required sums of shares k can be either
lower than or equal to V.

Trivial Secret Sharing (TSS) is the simplest scheme to gen-
erate N, shares of the secret s; by using modular sums. In TSS,
the ith node with secret s; randomly selects the first N, — 1
shares with uniform probability in [0, ¢), then computes the
last share as (s; — shi(s;) — sha(s;) — - - shy.—1(si)) mod q.
The method is an (N,, N..)-threshold scheme, as all N, shares
distributed to the computation peers are necessary to recover
s; from the modular sum of all shares. Alternative techniques
to generate secret shares have been independently proposed
by Shamir [22] and Blakley [23] in 1979. In Shamir’s solution,
node ¢ randomly selects a polynomial p;(x), whose degree is
k — 1 (with k < N.) and whose known term is the secret s;,
thatis to say,

pi(x) = s; + oy + apx® + ...+ ap_ 12", "

with ay, as, ..., aj—1 being the known polynomial coeffi-
cients. N. random shares are generated by the node in the
form sh,(s;) = {z,p;(xz) mod ¢}, where z is an arbitrary inte-
ger and ¢ a prime number greater than both s; and V,; usu-
ally, x is the identifier of the computation peer who will
receive the share. Collecting at least % shares, it is possible to
recover the polynomial coefficients by interpolation and to
determine s; as p;(0). The scheme is classified as a
(k. N.)-threshold scheme, given that k shares are sufficient
to recover s;. Note that both TSS and Shamir’s technique are
unconditionally secure, i.e., their security does not depend
on the computational complexity of a hard problem: rather,
their security is guaranteed by information theory.

4 SCENARIO AND PROPOSAL

This Section describes the distributed, privacy-preserving
protocol solutions that are proposed to mine the data of a
group of users, while respecting their privacy. The focus is
on those statistical learning strategies whose update laws
require linear operations such as vector addition: on one
hand, this allows to exploit the homomorphic property that
the previously introduced secret sharing strategies display;
on the other, the linear feature is exhibited by several popu-
lar data mining algorithms, and therefore does not repre-
sent a severe restriction.

It is assumed that a central server, i.e., the data miner, is
interested in knowing the average, aggregate behavior of
the users, i.e., the sum of their secrets, and that this knowl-
edge has to be acquired without disclosing the single user
data. Relying on a privacy-preserving data mining process
turns out very useful for both the data miner and the users
whose data are being mined; no privacy leakage occurs, an
attractive feature given mining techniques typically collect
personal, sensitive data, and at the same time accomplish
the profiling of the users.
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Fig. 2. Multi-ring scenario.

As anticipated before, rather than the large field opera-
tions required by public-key cryptography or homomorphic
encryption, Shamir’s secret sharing scheme is adopted to
protect users” data from external and internal attackers.

Let us therefore refer to a multi-ring scenario where, as
depicted in Fig. 2, we have:

e one central server, that acts as the data miner and
takes on the role of clocking the mining protocol;

e N users (interchangeably termed nodes in what fol-
lows) grouped in multiple rings on the basis of their
geographical location: we will denote by N,;,, the
number of rings and by Nyse = N/Nying the number
of nodes in each ring (with no loss in generality, N is
assumed to be a multiple of N,,,).

In this model, the central server is honest-but-curious, so it
follows the protocol without cheating, but it is not totally
trusted: it might want to access the users’ data for its own pur-
poses. Users are modeled as honest-but-curious parties too:
each of them can collude with other nodes within the same
ring and/or with the server, against one or more victims.
Note, however, that the proposed schemes can be easily gen-
eralized to cope with other types of malicious attacks through
the introduction of well-known cryptographic techniques
(verifiable secret sharing), as explained in [17], [24]. For exam-
ple, data integrity and peer honesty can be assured by using
secret and share signatures: secret signatures help verify the
correctness of secrets (if shares are corrupted, reconstructed
secrets do not match with their signatures), while share signa-
tures could be used to check correctness of shares before
reconstructing the secrets. However, the drawback of employ-
ing such cryptographic techniques is that the complexity of
the secret sharing scheme is increased. Also, note that the
security of the proposed schemes is assured by the use of the
well-known Shamir scheme.

Importantly, we do not assume that nodes are perma-
nently connected to the network: indeed, (i) users may inde-
pendently fail and (ii) there is a non-null probability p that
the node status is off, due to either intermittent network con-
nectivity or sudden departure of the user from the network.
Examples are nodes connected through wireless links or
users of a peer-to-peer overlay network [25], [26].

The unstable network scenario that has just been depicted
can severely impair the effectiveness of the proposed solu-
tions and, in general, can affect any MPC-based scheme: we
therefore evaluate not only their privacy degree, but also
assess their robustness against the loss of a fraction of users’
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data. The communication and computational costs have to be
determined too, in order to understand the price to be paid to
guarantee the desired privacy level. Finally, note that being
robust to departures has the positive side-effect to provide an
intrinsic protection from malicious users that might partially
compromise communications or data, offering the possibility
to exclude compromised or missing data from the final result.

4.1 Base Scheme

In this protocol scheme, that we call the Base Scheme, we
propose to employ Shamir’s technique and take advantage
of its homomorphic property separately in each ring. The
scheme is composed of two phases: during the first phase,
called Distribution Phase (DP), N,,.4 shares are created and
distributed among the users belonging to the same ring;
during the second phase, termed Collection Phase (CP), k&
sums of shares are delivered to the server, k < N,,,4., recon-
structing the aggregated data without privacy leakage.

4.1.1 Distribution Phase

The DP starts when the server randomly triggers a node
within each ring. We denote this node as node i and detail
the operations it performs in the following:

1)  node i makes N, shares of its secret data s; following
Shamir (k, N,eq )-threshold scheme, using the identi-
fiers of the nodes in its ring, ie, j=0,1,...,4,...,
(Npode — 1), as seeds;

2) it keeps for itself share sh;(s;) = [i, p; (i) mod ql;

3) it sends share shj(s;) = [j,pi(j) mod q] to node j, Vj,
j:Oala"'a(Nnnde - 1)/]7&2

When receiving the share from node ¢, every other node in
the ring learns that it is time to compute the shares of its secret:
it therefore behaves as node ¢, retaining the share computed
with its identifier as seed and sending the remaining shares to
the proper nodes within the ring.

Once node 7 has received the (N0 — 1) shares from the
nodes within its same ring, it sums them up and determines
Sh; = Zygg"fl shi(s;) which, owing to the homomorphic
property, is a share of the sum of the secrets. Similarly,
every node in the ring receives (N4 — 1) shares from all
other nodes and determines a different share.

4.1.2 Collection Phase

Now the CP begins. So, node i sends its contribution, Sh;, to
its downstream node, 7 + 1, that concatenates Sh;,; and for-
wards the output to the next node. This phase goes on until
k node contributions are concatenated; if a downstream
node is off or has not received all the shares from the other
nodes, it will be skipped. The node that concatenates the kth
share sends them all to the central server, that can therefore
successfully determine S,,,, the sum of the secret data for
the NV,,0q. users belonging to the examined ring,

Niode
Sring = § S« (2)
i=1

It is straightforward to take into account the presence of
more rings: the contributions of all rings have to be gath-
ered, where each of them is in the form of (2),
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trigger
Data miner

Fig. 3. Base scheme.

Nring

Sout = Z S’r'ingj . (3
=

The whole procedure is graphically summarized in Fig. 3.

4.2 Enhanced Scheme

When the number of nodes within each ring grows, the DP
of the Base Scheme becomes considerably burdensome. To
relieve it, we observe that it is not necessary that the generic
node sends its secret data shares to every other node
belonging to its same ring. Accordingly, we modify the pre-
vious proposal and employ a (¥/, z)-threshold scheme, with
2z < Nyoge and K < z, that we name Enhanced Scheme.

4.2.1 Distribution Phase

In every ring, we group nodes in z different sets I,, © =
0,1,...,(z— 1), based on the node identifier, j, so that set I,
includes all nodes such that their identifier satisfies

I, = {all nodes with identifier j | j mod z = r}. 4)

As a toy example, when N, =9 and z = 4, we have I =
{0,4,8}, I ={1,5}, I, ={2,6} and I3 ={3,7}. Now we
require node i to interact with a reduced number of nodes.
In particular, node i:

1) makes z shares, using the set identifier r, 0 <r <
(z—1), as seed: sh,(s;) = [r,pi(r) mod ql;

2)  keeps the share evaluated in 7 = i mod z;

3) sends sh,(s;) to a randomly selected node within set
I,Vre[0,(z—1)]and r # i mod z;

Resuming the previous example, node 1 of Fig. 4 keeps
for itself sh (s;) and might choose to send the remaining z —
1 = 3 shares as follows: share shg(s1) to node 4 in I;, share
sha(s1) to node 2 in I and share sh3(s;) to node 3 in I3, as
the red lines in Fig. 4 indicate; this is a possible example,
but any combination fulfilling the previous constraints is
equally acceptable. At the end of the DP, nodes within the
same set [, will possess only shares evaluated in r =
i mod z. Note that some nodes within a set might receive no
shares at all (as for node 0 in Fig. 4).

4.2.2 Collection Phase

Next, the CP begins: within set /,, each node sums to the
share it kept for itself the shares that it might have received,
to compute a partial sum, Sh; for node . Then, such partial
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sh,(s,) shy(s,) shy(s,)
shy(s;) shy(sg)

shy(s;) shs(so) sh(s,)
shy(s,) shs(sg)

—

shy(s) shy(s,)
shy(ss) shy(sa)

sho(sq) sh(s)
sho(s,) shy(s;)

Fig. 4. Enhanced scheme: DP example when N,,,sc = 9 and z = 4.

sums Sh;’s have to be collected, in order to determine
Shi, = icr, Shi = S Nuede= s, (s;). To achieve this, a possi-
ble choice is to accumulate them in a round robin manner,
starting from a node triggered by the central server, that trans-
mits its contribution to the next downstream node, and gradu-
ally covering all other nodes within the set. Continuing with
the previous toy example, given that within set /; node 0 is
triggered, this node sends Sh, (which is the sum of its share
sho(so) plus the shares that it might have received during the
previous DP) to node 4; node 4 then adds Shy and forwards
everything to node 8, which finally adds Shs. Itis up to node 8
to deliver the partial sum Shy, that it has computed to the
server. The remaining sets behave similarly, as portrayed in
Fig. 5. It is then sufficient that any & of such sums of shares
computed in & distinct sets of the same ring be transferred to
the central server for it to recover S, the sum of the N,
users’ data belonging to the examined ring.

In analogy to the Base Scheme, the Enhanced Scheme
procedure is replicated in every ring and the aggregated
sum S,,; of all data users is finally collected at the central
server. Note that, as desired, in each ring the sum of the
data is retrieved without disclosing any single contribution
to the server, thus protecting users’ privacy.

5 PRIVACY ANALYSIS

As regards privacy, we begin by observing that for the Base
Scheme, during the DP and CP each user owns N,,,q. shares

Data miner

trigger

trigger |

2 0

trigger
6

trigger

Fig. 5. Enhanced scheme: CP example from a generic ring when N,,,5. =
9,z=4and k' = 2.
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of Nyode different secrets: not enough to recover any valu-
able information about other users. The server only knows
partial sums and cannot recover the data of the single user
either. However, if at least £ nodes in a ring collude in a coa-
lition, they can collectively aggregate k shares from each
honest party, and gain access to the private data of the
Nyode — k honest users. In other words, for the Base Scheme
the probability P, of disclosing the secrets of v honest nodes
in presence of ¢ colluding nodes in a ring is

0,

The value of k has therefore to be carefully chosen, as
higher k values guarantee a higher confidentiality degree. On
the other hand, such values result in a scheme that is weaker
with respect to the loss of shares, as next Section will point out.

Regarding the Enhanced Scheme, to discover all secret
data in a ring with probablhty 1, the minimum condition to
fulfill is that all nodes of k" arbitrary sets collude: if, for the
sake of clarity, we examine the circumstance where the sets
have equal cardinality, given by |I,[= ””df , Y, r=
0,1,...,2—1, then K -|I,| strategically placed nodes are
needed. More generally, ¢ colluding nodes in a ring of the
Enhanced Scheme, with ¢ > &/, will be able to disclose the
secrets of v honest nodes, 1 < v < (N, — ¢), with proba-
bility P,, P, <1, that depends on nodes deployment inside
the ring. It is therefore interesting to determine such proba-
bility, that coincides with the probability that each of the v
honest nodes sends at least £’ shares to &' colluding nodes.
Assuming that the colluding nodes are uniformly distrib-
uted within the z sets, so that the probability p that an hon-
est node sends a share to a colluding user is a constant, then
the probability P that an honest node sends at least & shares
to k colluding nodes may be computed as

¢ <k

¢2kv V'U, ’U:Oy]-w-wNnode_k.

It follows that P, can be expressed as

P _ Nnode -
v v

¢)P”(1 B @

Unfortunately, there exists no clean, closed-form expres-
sion for P, when the sets are not uniformly polluted by mali-
cious nodes. However, in the Numerical Results Section P,
behavior will be assessed through a simulative approach, tak-
ing into account different £’ values and different, random
placements of the colluding nodes; furthermore, ]51, will be
compared against P,.

6 FAILURE PROBABILITY

In this Section, the focus is shifted on the reliability that the
two proposed schemes exhibit in scenarios with intermit-
tent network connectivity or sudden user departures. As a
matter of fact, during the scheme execution, it might hap-
pen that the contribution of a node cannot be included in
the final sum because: (i) some of the shares have not been
received due to a communication failure; (ii) the node itself
has gone down due some hardware failure; (iii) the node
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has voluntarily departed from its ring. Thus, we examine
the condition when the number of nodes whose data can-
not be included in the final sum is greater than or equal to
N’, where N’ — 1 indicates the maximum tolerated number
of missing data. As a general example, we state that, when
the output of the mining process provides an estimate E =
€], €y, . ..,€,] in the euclidean space R", whose a-norm dis-
tance d from the estimate E = [ey,ea,...,¢,] drawn from
the totality of the users’ data is greater than or equal to a
fixed §,

1
d= (Zeke;w) > 3§, ©))
=1

then the mining output is no longer acceptable. We there-
fore define the failure probability Py,; as

Pfit = Pr{number of lost data > N/} , 9)

and proceed to its evaluation.

We first begin by determining the probability Pruii—ring
that the data of the users belonging to the same ring cannot
be retrieved. In doing so, it is assumed that the data of the
single ring are either totally lost or entirely recovered. In
other words, we do not consider the circumstance where a
partial recovery of the data from a ring occurs. In particular,
we observe that

—  if the DP fails, the CP does not even begin;

- if the DP does not fail, the CP might in turn fail.

Let us indicate by Py,;—pp the probability that the DP fails
and similarly by Pf—cp the probability that the CP fails.
Assuming that the two phases are independent, we can com-
pute the probability Pyyji—ing that the partial sum provided by
a generic ring is not available at the data miner as

Prait—ring = Prait—pp + (1 — Plait—pp) - Prai—cp, (10)
where Py,;—pp and Pp,;—cp take on different expressions for
the Base and the Enhanced schemes.

Next, it is observed that the data delivered to the data miner
from each ring allows to recover a partial sum, S; for the ith
ring, where such sum takes into account the contributions
stemming from N, distinct users. In the ideal case, the sum
of N data will be available at the data miner; yet, as the partial
sums of some rings might be missing, in turn S, reduces to
the sum of N — Nyoge, N — 2Npoie, ..., 0data, if 1,2, ..., Nying
rings do not provide their contributlon, respectlvely.

It follows that Py is expressed by

A“vring
Pl = Z Pr{the data of 7 rings are unavailable} ,
=Ny

(11)

where

(12)

Nl =
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and

Pr{the data of i rings are unavailable} =

Nrin,g i N —i
< i P;‘n,il—ring(l - Pfail—ring) gt ’

13)

with Pjyi—ring given by (10). In the following subsections,
Pri—pp and Ppy—cp will be specialized for the two
proposed privacy-preserving schemes as a function of the
probability p that a node fails or the communication is inter-
rupted during the aggregation process (from now on, p is
named off probability).

6.1 Base Scheme
For this scheme, observe that Pj;_pp has the following
meaning:

P;ﬁfls_eij p = 1 — Pr{at least k nodes within the ring receive
the shares from all nodes},
(14)
and it is therefore given by
(base)
Pri-pp =
Nnode N - i - - .
1— dee) 1— Npodet 1—(1—= Neode NNV node—? .
(M Yot o)
(15)

On the other hand, when it comes to the CP of the Base

Scheme, P;Sf;f)C pis
“?Vn,()(le'
(base) Nnode i — o\ Nnode 1
Pfail—CP - Z ( i )p (1 p) . (16)
i=Nyode— (k=1)

6.2 Enhanced Scheme
For this scheme, Py,;— pp specializes to the following definition:

P;Z;)_ pp = 1 — Pr{at least k" of the z subsets receive all

shares from all nodes},

17

and therefore turns out to be

en - z 1 i —i

Pl =1= 37 )a=p - =Yy
i

(18)

whereas for the CP of the Enhanced Scheme, Pf(;,?—CP is pro-
vided by

) (19)

i=2—(K —1)

z i z—1
<Z)pi(t(1 _psct) )

where p,. is the probability that the collection of shares within
a set does not succeed. Since the shares are collected in a
round-robin manner, with the active participation of all nodes
in a set, the collection fails if at least one node fails, hence,

(en)  _
Pri—cp =

Nnode

psetzlf(lfp) 2 (20)
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7 COMMUNICATION COST AND COMPLEXITY

Lastly, communication cost and computational complexity of
both schemes are determined. With reference to the former
cost, we measure it by the number of connections required for
all intra-ring and server-to-ring communications.

7.1 Base Scheme
Regarding the communication cost of the (k, N, 4. )-thresh-
old Base Scheme, in each ring the DP needs:

1)  one connection to trigger one randomly chosen node
within the ring;
2) M connections to distribute the shares among
all nodes in the ring.
During the CP, it is simply necessary to take into account
k — 1 connections to collect the shares of the sum inside the
ring and 1 connection to send them to the server. The com-
munication cost of the Base Scheme, Cj,., is therefore

Cbase = 2

1+ + k| Nying - 21)

As regards computational complexity, during the DP
each node has first to compute N4 shares of the secret,
then it has to sum one of these with the N, — 1 shares
received by the other nodes. These operations are briefly

recalled below, along with their contribution to complexity:

1) evaluate a (k— 1)-order polynomial for an integer
value, so as to determine one share of the secret. The
complexity is O(k — 1);

2)  repeat the previous operation N, times;

3) sum one of the shares with the N4 — 1 shares the
node received from the other nodes of the ring. The
complexity is O(log(Nyede — 1)).

Thus, for the single node the computational complexity is
approximated by O(N,.qk), so that the complexity of the
entire DP within a ring is O(N? , k). During the following CP,
the server has to compute one polynomial over & points; here
the computational complexity is O(k), which is negligible
with respect to the previous term. Since the above operations
have to be repeated for each ring, the overall computational
complexity of the base scheme becomes O(N,,,y N2, .. k).

7.2 Enhanced Scheme

The Enhanced Scheme exhibits a different communication
cost, C¢,, that can be lower than Cj,, depending on the z
and %k values employed. To determine C.,, it is observed
that during the DP, in each ring

1)  theserver has to trigger all nodes to have them start dis-
tributing their shares: this requires N,,q. connections;
2) then, (z— 1) Ny connections are needed for the
distribution of the shares from the N,,,4. nodes to z —
1 different sets.
In the Enhanced Scheme, observe that nodes have no
knowledge about the actual number of shares they will receive.
So, CP will begin after an adequately long time interval, when

1) theserver contacts k&' nodes in &’ different sets, in order
to trigger the share collection within each set: this
requires k' connections;
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2) next, all nodes within a set will be contacted and
their partial sums gathered: this requires |I,,| — 1 con-
nections in the generic set /,;

3) finally, ¥’ connections will be employed to return to
the server the sum of the contributions of each trig-
gered set.

The communication cost of the Enhanced Scheme, C.,, is
therefore written as

Cen = Nnade -zt 2]{5, + Z (lIrl - 1) : Nring7 (22)
reD(k)
where D ) identifies the sets that the server selected.

As C,,, cost depends on K, to pursue an easy-to-interpret
comparison against Cy, the maximum value of C.,, C,, , is
examined, where C, corresponds to k' = z

en

Cjn - |: ) (Nnodc + 2) + Z (lLl - 1):| : Nring
reD(?) (23)
= |:Z . (Nnode + 2) + (Nnode - Z):| . Nring .
We outline that C”, takes on a lower value than Cy,. if

Nyode(Npoge — 1
Z(Nn,ode+l) +Nnode < l“l’%‘l“k, (24)

that, after a few algebraic passages, leads to

Z(k + 1) + N2 d 3Nnode
z < pon . (25)
2(Nnodc + 1)

If last inequality is satisfied, the Enhanced Scheme always
warrants a reduced communication cost than the base solu-
tion; the saving is the smallest when k' = 2, then it increases
for increasing values of k', as the evaluations reported in the
Numerical Results Section will quantify.

To evaluate the computational complexity of the enhanced
scheme, in analogy to the base scheme, observe that the opera-
tions each node has to perform are:

1) evaluate a (k' — 1)-order polynomial to determine
one share. The complexity is O(k' — 1);

2) repeat operation 1) z times;

3) sum the node’s own share with the shares received
from the other subsets. Such shares vary between a
minimum of 0 and a maximum of z — 1. In the worst-
case, the node has to compute a sum of z shares, whose
complexity is O(log(z — 1)).

During the DP, the Complex1ty that a node has to budget is
therefore approxnnatecl by O(zk), and the complexity of the
entire DP is O( ,wdezk) During the CP, in each subset the
sum of all shares is computed, the complexity ranging
between 0 and O(log(z — 1)), that Corresponds to the previous
worst-case; next, z polynomials over &’ pomts have to be com-
puted, whose complexity is O(z - log(k' — 1)), negligible with
respect to the DP complexity. Thus, if multiple rings are used,
the overall complexity becomes O(N,L,“,N,mzk/), which is
always lower than the base scheme complexity, as z < Ny
and k¥ < k.
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TABLE 2
Per Node Communication Cost and Computational Complexity
Base Enhanced
Communication cost O(Nyode) O(z)
Computational complexity O(kNpode) O(k z)

Table 2 summarizes the per-node communication cost and
computational complexity for the base and the enhanced
schemes. Although in line with other state of art techniques
[17], one advantage of the proposed solutions is that they
evenly distribute the computational load among all nodes,
without relying on computational servers.

Lastly, we compare the costs of the proposed schemes to
those displayed by the federated learning solution in [20].
Since this scheme relies on a centralized server, the solution
displays distinct communication and computational costs
for the nodes and for the server. For a node in [20], the com-
munication and complexity costs are O(N,q) and O( mde)
respectively, much higher than the proposed schemes (for
the sake of simplicity, the comparison neglects m, the length
of the data). Significant burden is also placed on the server,
with communication cost of O(N? ;) and computational
complexity also O(N?,,,). This is far higher than the server
cost of the proposed base scheme, that amounts to a negligi-
ble O(1) for communication (only 2 connections needed)
and to O(k) for Complex1ty, while, for the enhanced scheme,
the server costs are O(k') and O(zk'), respectively.

8 APPLYING THE SCHEME

8.1  Fuzzy C-Means With Privacy

As a concrete example of data mining tool that can success-
fully leverage the privacy preserving schemes discussed
before, we consider one of the most widely used clustering
algorithms, Fuzzy C-Means (FCM for short) [27]. FCM is an
unsupervised soft clustering strategy, that attempts to parti-
tion a finite collection NV of data elements into K fuzzy clus-
ters. Without loss of generality, assume that each of the data
elements is an array of size 1 x M and indicate by d; =
[dirdio ... d;p] the data element provided by the ith user
(from now onward the usage of bold will point to either a
vector or a matrix). The FCM algorithm returns:

e K centroids, ¢, €y, ..., €k, Cj = [¢jiCj2 . . . ¢jur], Where

c;is the representative element of the jth cluster, and

e matrix U, N x K in size, whose generic element u,,

u;j € [0,1], represents the membership degree of the
d; data element to the jth cluster.

The ith row of the membership matrix U, that we indi-
cate by the symbol u; = [u; w12 . . . u;k], holds the member-
ships of the ith user to the various clusters. We refer to it as
to the ith user membership vector and observe that the con-
straint 3% j—1 uij = 1 has to be respected.

The steps that FCM goes through are succinctly described
next:

1) Select the number of clusters K (2 < K < N), the
fuzziness parameter f (in literature, the value f =2
is often encountered) and the termination criterion e.
Set the iteration index t to ¢t = 0 and randomly initial-
ize the membership matrix U — U©.
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2) atstept, compute the centroids as

TN ()

for every j, j=1,2,...,K;

(26)

3) for every ¢ and j pair, also update the generic element
u( of matrix U™ as follows:

2
d;—c 7T
zk 1 (Hd 7Cff 1)H>
where || - || indicates the euclidean norm;
4) for t > 1, if |[UHYD —UY|| <, stop; otherwise set
t =t + 1 and return to step 2.

Once the algorithm execution has come to an end, d;,
hence the ith user, is assigned to the cluster whose member-
ship degree is the highest, that is, max;{u;;}.

Given the final aim is to profile the users without violating
their privacy, the most conservative approach is taken and it is
therefore assumed that the profiling server be exclusively
interested in the centroids determination, whereas it is not
allowed to access either the users” data or their membership
vectors. Accordingly, a possible implementation of the algo-
rithm that is totally trusted and privacy respectful is discussed
next. To this end, the profiling server is required to be respon-
sible for updating the centroid vectors only, as step 2 of the
algorithm mandates, and for broadcasting them to the nodes,
that are responsible for the U'") matrix update at step 3; for the
same privacy reasons, it is node 7 only that reads and modifies
its membership vector u;. To allow the server to iteratively
compute the centroid vectors, from (26) we observe that at
step ¢ of the algorithm the elements that the ith user has to con-
vey to the server are those grouped in the following matrix s( ):

; (27

(ng)'fdﬂ

t) . .
s = . . ; (28)
(UE? )fdiM (u Zg)fdm

ol (uz)!

(uiy
which represents the ith user secret to be protected.

We conclude noting that this privacy-oriented FCM
implementation implies that a fraction of its computational
burden is placed on nodes, that are responsible for updating
their membership vector at every step, until convergence is
reached. However, as the profiling server has to only per-
form additions on the terms it receives, our proposed
schemes can be profitably employed, being based on SSC.

() dyy

8.2 FCM Loss Tolerance
To obtain a reasonable estimate for the maximum number of
missing data N’ that defines the failure condition in (9), this
subsection investigates how robust the FCM centroid evalua-
tion is with respect to data losses. A criterion is first established
to determine N'; then, several data sets are considered, that
display dlfferent features in terms of sparseness and cardinal-
ity, and the distinctive N’ value of each of them is computed.
The criterion works as follows: the centroids are calcu-
lated over the complete data set; the set is then reduced by a
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fixed number a of randomly chosen data samples; the new
centroids, ¢ j, are determined and so are the R? euclidean
distances [|c; — cf[|, j=1,2,..., K. As the FCM output can
be affected by the specific selection of the removed data, for
a given « the procedure is repeated for a sufficiently large
number of trials G and then the ensemble averages Eg|||c; —
ctll], i=1,2,..., K, are evaluated. The loss of fewer than
o = N’ data is deemed acceptable, where N’ corresponds to
the first value that violates the condition max;FEg|| |cj

¢} <8, with 8§ =107% from this point onward, N is
referred to as the FCM loss tolerance threshold. Further-
more, the € value ruling the FCM stop condition is set equal
to 10710, 1e., e < < 6.

The choice of the data sets deserves a few words: two of
them are commonly encountered in the literature that deals
with clustering and feature extraction, namely, the so-called
Iris data set [28] and the banana data set [29]. The Iris data set
contains random samples of flowers belonging to three spe-
cies of iris flowers. Fifty observations of sepal length, sepal
width, petal length and petal width are recorded for each spe-
cies, wherefrom N = 150 quadruples are available: as an
indicative example, Fig. 6a shows the normalized sepal width
on the z-axis and the petal length on y-axis, along with the
chromatic indication of the clusters and the centroids that
FCM returns; in Fig. 6a through Fig. 6d, the reported values
have been normalized with respect to their maximum. The
K =3 choice is dictated by the number of species, that is
known beforehand. Our tests revealed a loss tolerance thresh-
old N' = 0.08- N. As for the banana set, we used the algo-
rithm in Appendix A.7, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2021.3049286, of [29] to generate N =
1000 points scattered around a segment of a circle using the
following default parameters: radius of the circle of which the
banana is an arch equal to p = 5, starting and ending angles of
the arch 6; =9 - (x/8) and 0, = 19 - (r/8) respectively, stan-
dard deviation that rules the dispersion of the data around
the circle equal to o = 1. For this set, FCM determined K = 4
clusters whose centroids are shown in Fig. 6b, and the com-
puted loss tolerance threshold is N' = 0.23 - N. We also exam-
ined two real databases that were made available to us: the
database of the viewing habits exhibited by the users of a
small, multichannel web-TV platform, that were monitored
24 hours a day for 9 months, and the database of daily
methane consumption of 200 customers (schools, factories,
medium-to-small enterprises) monitored by a local multi-util-
ity company for 100 days. Fig. 6¢ graphically illustrates the
average session time and the average session number for the
viewers of the most popular channel extracted from the data
set (V = 113); the viewers were deliberately grouped in K =
2 clusters and the determined FCM loss tolerance threshold is
N’ =0.09 - N. Finally, Fig. 6d presents the daily gas consump-
tion on the abscissa and the daily peak consumption on the
ordinate drawn from the fourth examined data set, where
N =2-10% its K =9 clusters and the correspondmg cent-
roids. Here the loss tolerance threshold is N' = 0.31 - N.

Such case studies unveil that FCM loss tolerance in deter-
mining the centroids vastly varies, depending on the size and
the shape of the data set. This is summarized in Table 3, that
reports the number of centroids K, the size N and the loss
tolerance threshold N’ for each of the considered data sets.
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Fig. 6. FCM clustering examples on different data sets.

It is out of the scope of the current work to systematically
investigate the previous point: rather, and more pragmati-
cally, we conclude that in our numerical scouting N fell in
the range [0.08N,0.31N]. This indicates that the approxi-
mated centroids — modestly — differ from the exact ones,
only if a non negligible fraction of the original data is miss-
ing. In next Section, the failure probablhty of the proposed
schemes will therefore be evaluated for N' = 0.2N, a value
that lies in the middle of the above interval.

8.3 Estimating the Node Off Probability p

In order to draw a numerical estimate of the node off probabil-
ity p for a real use case, several data traces were analyzed,
referring to the smart water metering service of a local com-
pany in a town close to Turin, Italy. In the examined scenario,
metering devices are equipped with a class A Long Range
(LoRa) interface [30] for long distance and low power trans-
missions. They wirelessly upload data to the gateway
deployed by the water company. We were allowed to inspect
the anonymized packets received from the LoRa gateway,
that is run and maintained by an Italian LoRaWAN operator.
As LoRa end-devices never voluntarily abandon the network
they belong to, the probability p that a node is off coincides
with the packet error probability that the transmissions from
the metering device experience, which we estimated ex-post
through the overall packet error rate. We inspected traffic
data over 15 weeks and extracted packet error statistics. The
end-devices were configured to send 2 packets per day, that
were randomly transmitted choosing one out of three fre-
quency channels in the 868 MHz ISM band. During the

TABLE 3
Loss Tolerance Thresholds
Data set K N N
Iris 3 150 0.08 N
Banana 4 103 0.23N
WebTV views 2 113 0.31N
Methane consumption 9 2.10* 0.09N
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15 weeks of observation, the number of active end-devices
was 308, generating a total of 207040 packets.' However, only
181257 packets were received correctly. This translates in an
estimated off probability p = 0.125. Considering that retrans-
missions are not adopted in the LoRa network under investi-
gation, such value can be interpreted as referring to the worst-
case scenario.

Note that the above setting is meaningful for two distinct
reasons: (i) it is a valid example of a scenario where the pro-
posed schemes would consent the extraction of valuable cus-
tomers’ features, without violating the users’ privacy; (ii) it
allows to estimate p for an IoT architecture based on LoRa-
WAN, that in recent years has emerged as one of the most
widespread solutions for wireless data collection.

9 NUMERICAL RESULTS

The following numerical results illustrate the performance
attained by the proposed privacy preserving schemes. We
used a custom simulator implemented in MATLAB and we
compare the results with the analytical models developed
throughout the paper.

The first important aspect to assess is the privacy level the
schemes guarantee: in Section 5, their privacy was quantified
through the probability P, of disclosing v secrets in the pres-
ence of a given number ¢ of colluding nodes. For the Base
Scheme, we recall that & colluding nodes disclose the data of
all users with probability 1, thatis, P, = 1 when v = N,,q. and
¢ = k. Conversely, for the Enhanced Scheme Fig. 7 reports the
behavior of P, as a function of v, when ¢ = 10 and N,,,q. = 30.
The curves referto k' = 3,5,7,9 and z = 10 sets. Dashed lines
have been obtained by simulation, and display the mean
value of P,, as well as its t-Student 95 percent-confidence
intervals, determined from 20 repeated trials for each point.
More accurately, in every simulation run ® = 10 colluding
nodes are randomly placed within the z sets of the ring. Then,
the honest users randomly choose the nodes in every set to

1. The total number of packets transmitted by the end-devices was
extrapolated using the frame counter of the successfully received ones.
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Fig. 7. P, and P, as a function of v for the Enhanced Scheme, when
Nyode = 30, k =3,5,7,9, and ¢ = 10.

send their shares to. If, for every honest node, at least k’ shares
are delivered to colluding nodes, then the v secrets are
revealed and the counter of secret disclosures 1mjjsjose 1S incre-
mented by 1; given a total of 1, i, distinct configurations of
colluders are randomly generated, one sample of P, is numer-
ically determined as the mgisciose/Mcon fig Tatio. The procedure
is repeated 20 times, in order to evaluate the mean and the
confidence intervals reported in the figure.

The solid curves show the behavior of P,, as introduced in
(7), and offer an approximation to P,. Provided that k' is high
enough, e.g., k' = 9, P, values lie really close to their simulated
counterparts, but P, approximation is satisfying for & < 9 too.
We also observe that for increasing values of k', P, takes on
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really modest values. On the other hand, increasing k' threshold
also increases the failure probability, as it will be shown next.

The second relevant aspect to consider is the reliability of
the schemes in aggregating a sufficiently high number of data
or, in a specular manner, their failure in doing so. We quantify
this through the failure probability Py,; defined in (9) and, as
discussed in Section 8.2, in the next experiments we assume
that the maximum number of tolerated losses is equal to
N =02-N.

For the Base Scheme, Figs. 8a, 8b and 8c show Py,
Prii—pp and Pr—cp as a function of k, respectively. The
curves in the figures refer to two scenarios, where N = 500
nodes have been organized into either 20 rings with N, =
25 each (solid lines) or into 5 rings with V,,,q. = 100 (dashed
lines). Different values for the probability p that a generic
node is off are considered, namely, 0.01, 0.05 and 0.125. The
last value has been selected having in mind the worst-case
scenario discussed in Section 8.3, whereas the remaining
values refer to more benevolent settings.

First, note that the DP has a higher failure probability than
the CP, and that sensitivity to p is much more pronounced for
Nyode = 25 than for N,,q. = 100. These remarks are not surpris-
ing, as the DP requires all IV, nodes to be active while distrib-
uting their shares and accepting the shares of all other nodes. In
turn, the higher DP vulnerability reflects in Py,; and Ppi—pp
curves being at close range. We also observe that when N4, =
25, a careful selection of k confines Pj,; to very low values,
even for p = 0.125. On the other hand, if N,,4. = 100 and p =
0.125, Py, is non-negligible even with low values of k.

For the Enhanced Scheme, using the same N and N’ values
as before, Figs. 9a, 9b, and 9c report Py, Prai—pp and Pry—cp
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Fig. 9. Prait, Prair—pp, and Py,;_cp as a function of k' for the Enhanced Scheme.
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Fig. 10. Py, Praii—pp, and Py, —cp as a function of K for the Enhanced Scheme, N, = 100, p = 0.05, and z = 15, 30, 50.

as a function of k:/, respectively. Solid lines refer to N, = 25
and z = 10, whereas dashed lines refer to NV,,,q. = 100 and z =
50. These parameters are chosen to have the same number of
nodes, (Nyoae/2) = 2, in every set. As before, Py, pp is pre-
dominant in Py,; evaluation. The comparison between Figs. 8
and 9 reveals that, when k = kl, so that the two protocols use
the same number of minimum required shares, the Base
Scheme exhibits lower failure probability than the Enhanced
Scheme. However, as it will be shown later, this comes at the
cost of a much higher communication overhead. Additionally,
fora given IV, value, the Enhanced Scheme failure probabil-
ity can be confined by decreasing k and/or increasing z. This
is shown in Figs. 10a, 10b, and 10c, where the effects of three
distinct values of z on Py, Ppai—pp and Pju—cp are consid-
ered, for N,,,qc = 100 and p = 0.05.

Another important figure of merit for the proposed pri-
vacy preserving solutions is their communication cost,
measured by the number of messages required for complet-
ing the single aggregation round. Fig. 11 reports the com-
munication cost as a function of k£ = ¥ for the Base Scheme,
as well as the maximum cost for the Enhanced Scheme. The
reported values refer to N =500, Nyue =50 (so that
Nying = (N/Nyoge)| = 10) and z = 20, that was selected to
verify condition (25). Note that, within the examined range
of k = k' values, the highest value of the maximum cost of
the Enhanced Scheme is about 0.8 times the lowest cost
value of the Base Scheme. For k = k", it is therefore possible
to conclude that the Enhanced Scheme outperforms the
Base Scheme in terms of privacy degree and communica-
tion cost; yet, it exhibits a higher failure probability.

1.3x10%7
12x10*f
C

1LIx10*f

-

/ Base scheme
Enhanced scheme
1x10% : : :
5 10 15 20
k

Fig. 11. Communication cost of the two schemes as a function of k = ¥
when p = 0.05.

Nevertheless, for the Enhanced Scheme, the latter figure of
merit can be improved suitably picking zand k.

10 CONCLUSION

This paper has explored the domain of large scale, privacy-
preserving data mining. It has explicitly taken into consider-
ation the possibility that during the mining process, data
become inaccessible due to intermittent network connectivity
or sudden user departures. A distributed multi-ring architec-
ture has been proposed, where a base scheme and an
enhanced secret sharing scheme are put forth. A tight approxi-
mation for the privacy degree that the enhanced scheme war-
rants to users has been established by analysis. Furthermore,
the impact of data unavailability on the performance of the
two proposed protocols has been theoretically quantified
through a newly introduced figure of merit, the failure proba-
bility. Their communication cost and computational complex-
ity have also been assessed. The framework has been applied
to some specific use cases, using real data traces, including a
smart metering scenario based on the emerging LoRa technol-
ogy. The presented results reveal that the performance figures
of both aggregation schemes are attractive, demonstrate that
MPC is feasible, and pave the way to new large-scale distrib-
uted implementations.
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