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ABSTRACT Due to the rapid and widespread growth of the Internet-of-Things (IoT) paradigm, present days
witness an exponential increase in the number of connected devices. In this regard, the orthogonal transmis-
sion techniques featured by conventional 4G and 5G systems can only support a limited number of simulta-
neously active users, due to their low spectral efficiency and poorly flexible resource allocation. To overcome
such limitations, the 6G framework will include novel Next Generation Multiple Access (NGMA) solutions
that will efficiently and flexibly connect a significantly larger number of devices over the same portion of
spectrum. Under the NGMA umbrella, the Power-Domain Non-Orthogonal Multiple Access (PD-NOMA)
technology is able to accommodate multiple users on the same frequencies by carefully assigning different
power levels to the active users and employing Successive Interference Cancellation (SIC) receivers. In this
work, we put forth a novel analytical approach to evaluate the performance that PD-NOMA achieves on the
uplink of a single cell when a dynamic-ordered SIC receiver is considered. With respect to other existing
works, the fundamental limits on the system performance are assessed analytically for an arbitrary number
n of simultaneously transmitting users, and both the case of Rayleigh and lognormal-shadowed Rayleigh
fading are examined. The closed-form expressions presented in this work, whose correctness and excellent
accuracy are validated through Monte Carlo simulations, disclose the impact of lognormal shadowing and
an increasingly larger number of active users on the PD-NOMA performance.

INDEX TERMS Non-orthogonal multiple access, power-domain NOMA, NOMA, outage probability,
dynamic-ordered SIC, order statistics.

I. INTRODUCTION
Scanning the 5G and beyond horizon, wireless connectivity
appears as one of the key enabling technologies for future
Internet of Things (IoT). According to Cisco [1], the number
of connected devices is yet growing at an extraordinary pace
and is expected to reach a total of 29.3 billion devices by
2023, with IoT connections accounting for half of the total.
Such a massive demand for Internet connectivity, along with
the heterogeneous set of performance requirements which
characterizes IoT devices [2], transcends the capabilities of
fourth generation (4G) and fifth generation (5G) systems.

The associate editor coordinating the review of this manuscript and
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Relying on orthogonal transmission techniques, these sys-
tems can only support a limited number of simultaneously
active users, and advocate for the design of new connec-
tivity solutions. In this direction, sixth generation (6G) cel-
lular systems will feature novel Next Generation Multiple
Access (NGMA) schemes able to guarantee massive connec-
tivity, improved energy efficiency, and lower latency.

Under the NGMA umbrella, Non-Orthogonal Multiple
Access (NOMA) techniques are expected to play a pivotal
role in the support of unprecedented connectivity capabili-
ties [3]. The key idea behind NOMA, i.e., serving multiple
users over the same radio spectrum, has been widely inves-
tigated over the last years, breeding an abundant body of
scientific literature and the proposal of many distinct NOMA

73178 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

PRE-PRINT

https://orcid.org/0000-0001-8236-5633
https://orcid.org/0000-0003-4162-5042
https://orcid.org/0000-0002-9784-3703


L. Lusvarghi, M. L. Merani: Fundamental Limits on the Uplink Performance of the Dynamic-Ordered SIC Receiver

approaches. Among them, there appear Power-Domain (PD)-
NOMA, Sparse Code (SC)-NOMA, and Resource Spread
(RS)-NOMA, to name a few examples. As a result, the
risk that every NOMA bibliography incurs is to forget or
inadvertently miss some relevant works among the multitude
of published papers. For this reason, the surveys reported
in [4]–[7] are mentioned in this Introduction together with [8]
and [9], which provide a comprehensive comparison between
NOMA techniques and alternative NGMA schemes such
as Multi-User Multiple-Input Multiple-Output (MU-MIMO),
and Rate-Splitting Multiple Access (RSMA).

Specifically, this work concentrates on PD-NOMA.
PD-NOMA multiplexes multiple users on the same radio
resources by assigning them different transmit power levels,
and it can be employed in both downlink and uplink com-
munications. At the receiver side, the superimposed signals
are separately decoded using Successive Interference Cancel-
lation (SIC). Confining the attention to PD-NOMA, simply
referred to as NOMA in the rest of this paper, its behavior
has been assessed in numerous studies. For example, the
authors in [10] showed the potential of NOMA in mitigating
traffic congestion and reducing latency when 5G Vehicle-
to-Everything (V2X) downlink transmissions are considered.
The performance of random access uplink NOMA was eval-
uated in [11] from a system-level perspective, i.e., in terms
of throughput and access delay, whereas an analytical frame-
work for the modeling and the analysis of large-scale uplink
and downlink NOMA systems has been proposed in [12],
[13]. The studies in [14], [15] highlighted the strengths
and the limitations which characterize a typical SIC-based
decoding process in uplink and downlink NOMA commu-
nications, and put forth the design of a new hybrid SIC
receiver. Moreover, it is worth recalling the contributions
in [16] and [17]. In the former, the performance of uplink
NOMA, paired with a dedicated power control scheme, was
analyzed in terms of outage probability and achievable data
rate. In the latter, the authors proposed a novel uplink NOMA
scheme able to achieve higher spectral efficiency and lower
receiver complexity with respect to conventional techniques.
Stemming from [16], [18] focused on the optimization of
the power allocation strategy. Differently from the contribu-
tions mentioned so far, where a fixed decoding order SIC
receiver was considered, the authors of [19] and [20] analyzed
NOMA systems employing dynamic-ordered SIC receivers.
The dynamic-ordered SIC receiver adaptively varies the
decoding order on the basis of the instantaneously received
signals power. These works determined closed-form expres-
sions of the outage probability for the case of three users,
without however providing a systematic analysis. In [21], the
Signal-to-Interference Ratio (SIR) coverage probability of
uplink NOMA was evaluated, comparing the performance of
two SIC receivers; namely, the dynamic-ordered SIC receiver
was confronted against a SIC receiver that ranks and decodes
the users’ signals on the basis of their mean received powers.

It is worth pointing out that all the previous investigations
were performed in the exclusive presence of Rayleigh fading,

an assumption that greatly simplifies the study. In this regard,
the work in [22] introduced the hypothesis of generalized
fading channels encompassing statistics such as Rayleigh,
Rice, and Nakagami, and considered a fixed decoding order
SIC. Due to the complex nature of the analysis, the authors
exclusively considered the circumstance of two superimposed
users for mathematical tractability. In [23], the channel model
was the generalized α-µ fading and, also in this work, the SIC
decoding order was fixed; here too, the analysis was limited
to the circumstance of two or at the most three simultaneously
active users.

In this work, we analytically assess the performance of
a Single-Input Single-Output (SISO) uplink NOMA system
when a dynamic-ordered SIC receiver is considered. The
assumption of only two or three superimposed signals usually
found in literature is removed to disclose the fundamental
limits on the achievable performance of the receiver. Fur-
thermore, the analysis in the presence of Rayleigh fading
is extended by the investigation of the combined effects of
fading and lognormal shadowing. To characterize system
behavior, the outage probabilities P(j)out , j = 1, 2, . . . , n, are
determined, the generic P(j)out being defined as the probability
that the receiver fails to decode the j-th strongest signal and
therefore cannot recover the remaining n− j weaker signals.
With respect to the state-of-the-art, this work offers several
novel contributions:

- a general method to analytically evaluate the outage
probabilities is provided, based on the unique properties
of the joint probability density function of the ordered
received powers, as the latter are dependent, non identi-
cally distributed random variables. The approach can be
profitably employed for any number n of simultaneously
received signals;

- when Rayleigh fading is considered, the exact analytical
expression of P(1)out , the probability that the strongest
signal cannot be decoded and that the SIC receiver fails
to recover any of the simultaneous signals, is provided
for an arbitrary value of n.When the first strongest signal
can be decoded, a closed-form approximation of P(j)out ,
j ≥ 2, is also put forth in order to characterize the
performance of the remaining n− 1 active users;

- when the signals are affected by Rayleigh-lognormal
shadowed fading, an approximation of the outage prob-
ability P(j)out , j ≥ 1, is offered, demonstrating that it
achieves an excellent accuracy, again for an arbitrary n;

- the proposed approximations show that, j being fixed,
P(j)out , j ≥ 2, can be recursively evaluated as a function
of the probabilities P(1)out obtained in the presence of n,
n− 1, . . . , n− j+ 1 simultaneously active users.

Overall, the analysis discloses the limits that the
dynamic-ordered SIC receiver faces for an increasing number
of superimposed signals, when an uplink NOMA system is
considered. Furthermore, it reveals that lognormal shadowing
is responsible for a non-negligible performance worsening,
with respect to the circumstance where Rayleigh fading only
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is considered. The deterioration is quantified for different
values of σL , the standard deviation of the slow, lognormal
fading in dB.

The remainder of the paper is organized as follows.
Section II introduces the system model, it illustrates the anal-
ysis and it puts forth the approximations to the outage prob-
abilities experienced on the uplink. Section III specializes
the study to the cases of Rayleigh and Rayleigh-lognormal
shadowed fading. Section IV provides several numerical
results that validate the approach and Section V draws the
conclusions.

II. PERFORMANCE ANALYSIS
A. SYSTEM MODEL AND PERFORMANCE METRIC
EVALUATION
The current work focuses on the uplink communications in
a cellular system. Power-domain NOMA is considered and
the reference scenario features nUser Equipments (UEs) that
transmit to a central-located base station on the same radio
spectrum. Let pt,i denote the transmission power of the i-th
UE and hi the envelope of the channel between such UE and
the base station. Let

Xi = pt,i|hi|2 i = 1, 2, . . . , n (1)

denote the instantaneously received power at the base station
from the i-th UE. Further assume that every UE experi-
ences independent channel conditions while transmitting to
the base station; it follows that hi and hj are independent
random variables, ∀ i and j, i 6= j, and so are Xi and Xj.
Moreover, assume that the signal recovery is performed using
a dynamic-ordered SIC receiver. This choice implies that:
(i) the instantaneously received signal powers from the UEs
are first sorted in descending order at the base station; (ii) the
receiver attempts to decode the signals in accordance to the
same sequence.

Indicate by SN the set of the n! permutations of N =
{1, 2, . . . , n} and by R = {r1, r2, . . . , rn}, R ∈ SN , the
permutation that corresponds to the descending order of the
instantaneously received powers. It follows that

pt,r1 |hr1 |
2
≥ pt,r2 |hr2 |

2
≥ . . . ≥ pt,rn |hrn |

2. (2)

where pt,r1 is the transmitted power of the UE that exhibits
the highest received power, pt,r2 the transmitted power of the
UE that exhibits the second highest received power, and so
forth.

Next, introduce the random variables

X(i) = pt,ri |hri |
2 i = 1, 2, . . . , n (3)

and observe that the X(i)s are no longer independent. Rather,
owing to (2) they constitute an order statistics; for the nota-
tion employed, X(1) is the largest order statistic, X(n) is the
smallest.

The receiver first attempts to decode the strongest signal.
If the decoding process is successful, the receiver removes the
first strongest signal and then proceeds to decode the second
strongest. For the base station to decode the message from

the j-th strongest user UE(j), the j − 1 received signals with
the strongest power have to be successfully recovered and
removed first.

Recalling Shannon’s capacity theorem, the achievable data
rate of UE(j) is

R(j) = log2

(
1+

X(j)∑n
i=j+1 X(i) + σ

2

)
bits/s/Hz, (4)

for j = 1, 2, . . . , n− 1, where σ 2 is the noise power, and

R(n) = log2

(
1+

X(n)
σ 2

)
bits/s/Hz (5)

for the last user UE(n), whose received power is the weakest.
Denote by R̂(j) the target data rate of UE(j) and define the

outage probability P(j)out , j = 1, 2, . . ., n, as the probability that
the SIC receiver can successfully recover the first strongest
signal, the second strongest, up to the j − 1, but it fails
to decode the j-th strongest and all the subsequent signals.
Analytically,

P(j)out = 1− P{R(j) ≥ R̂(j)}. (6)

If we indicate by Ek , k = 1, 2, . . . , n−1, the random event
identified by the condition

X(k)∑n
i=k+1 X(i) + σ

2 ≥ γ̂k (7)

where

γ̂k = 2R̂(k) − 1, k = 1, 2, . . . , n , (8)

and by En the event in which the condition

X(n)
σ 2 ≥ γ̂n (9)

holds, then (6) is equivalently re-written as

P(j)out = 1− P
{
∩
j
k=1Ek

}
, j = 1, 2, . . . , n, (10)

where it is observed that the random events E1, E1, . . ., En are
statistically dependent.

Indicate by fjointn (x(1), x(2), . . . , x(n)) the joint probability
density function (pdf) of the ordered set of random variables
X(i), i = 1, 2, . . . , n, and by Dj the region of the X(1),
X(2), . . . ,X(n) space identified by the conditions:

Dj =



X(1) ≥ γ̂1 · (
∑n

i=2 X(i) + σ
2)

X(2) ≥ γ̂2 · (
∑n

i=3 X(i) + σ
2)

...

X(j) ≥ γ̂j · (
∑n

i=j+1 X(i) + σ
2)

0 ≤ X(n) ≤ X(n−1) ≤ · · · ≤ X(2) ≤ X(1).

(11)

It follows that P(j)out , j = 1, 2, . . . , n, is determined solving the
integral

P(j)out = 1−
∫
· · ·

∫
Dj

fjointn (x(1), x(2), . . . , x(n−1), x(n))

× dx(n)dx(n−1) . . . dx(2)dx(1). (12)
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Among the different outage probabilities P(j)out , observe
that P(1)out deserves a special place, as it coincides with the
probability that the strongest signal cannot be correctly
recovered; in this circumstance, not even one, out of the
n simultaneous transmissions, can be successfully decoded
and power-domain NOMA fails. Indeed, the inequality
X(1) ≥ γ̂1 · (

∑n
i=2 X(i) + σ

2) identifying the outage domain
D1 represents the necessary condition for the SIC decod-
ing process to begin. Equivalently stated, P(1)out gives the
probability that the adoption of power-based NOMA turns
out detrimental, as not even the best signal is correctly
decoded.

When evaluating P(j)out , the first non-trivial problem at hand
is to determine fjointn (x(1), x(2), . . . , x(n)). In this respect, let
fi(xi) be the pdf of the unordered random variable Xi, i =
1, 2, . . . , n, defined in (1), whose pdf is available once the
pdf of hi is known, as pt,i is a constant, and define Fn as the
following n× n matrix

Fn =


f1(x(1)) f2(x(1)) . . . fn(x(1))

f1(x(2)) f2(x(2)) . . . fn(x(2))

...
...

. . .
...

f1(x(n)) f2(x(n)) . . . fn(x(n))

 (13)

where fj(x(i)) denotes the pdf of the unordered random vari-
able Xj, j = 1, 2, . . . , n, when the function argument is the
random sample x(i) of the ordered random variable X(i). For
the purpose of what follows, recall that the permanent of a

square matrix A, written as
+

|A
+

| , is defined like the determi-
nant, except that all signs are positive. For an arbitrary n, it can
be demonstrated that the joint pdf fjointn (x(1), x(2), . . . , x(n)) of
the ordered statistics X(1),X(2), . . . ,X(n) is

fjointn (x(1), x(2), . . . , x(n)) =
+

|Fn
+

| , (14)

where Fn is given by (13). Last result is substantiated by the
reasoning in [24], where the arguments of [25] are extended
to prove the formulation in (14) with the use of permanents.

At first sight, (14) gives the impression that evaluating the
integral in (12) might be quite cumbersome for an arbitrary
value of n. However, the joint pdf obeys a highly peculiar
structure, that allows a more convenient rewriting of it in the
following terms: let Si = {i1, i2, . . . , in} denote the generic
permutation ofN = {1, 2, . . . , n} in SN , where we recall that
the latter symbol indicates the set of all possible permutations.
It follows that fjointn (x(1), x(2), . . . , x(n)) can be equivalently
written as

fjointn (x(1), x(2), . . . , x(n))

=

∑
Si∈SN

f1(x(i1))f2(x(i2)) . . . fn(x(in)). (15)

Last expression highlights that the joint pdf exhibits the pres-
ence of n! terms, wherein the permutations of the arguments
of the f1(·), f2(·), . . . , fn(·) pdfs appear. Replacing (15) in (12)

leads to

P(j)out = 1−
∫
· · ·

∫
Dj

∑
Si∈SN

f1(x(i1))f2(x(i2)) . . . fn(x(in))

× dx(n)dx(n−1) . . . dx(2)dx(1) (16)

and denoting by ISi the result of the integral

ISi =
∫
. . .

∫
Dj

gi1i2...in (x(1), x(2), . . . , x(n)) dx(n) . . . dx(1),

(17)

where

gi1i2...in (x(1), x(2), . . . , x(n)) = f1(x(i1))f2(x(i2)) · . . . · fn(x(in)),

(18)

then P(j)out can be rewritten as:

P(j)out = 1−
∑
Si∈SN

ISi , ∀j , j = 1, 2, . . . , n. (19)

Luckily, the random variables X1,X2, . . . ,Xn obey the same
statistical description, although with different mean values.
It follows that it is not necessary to compute every single
ISi term in (19). Rather, the n-th fold integral in (17) has to
be solved only once, for a specific Si. For instance, IS1 can
be determined, S1 = {1, 2, . . . , n}. Then, all the remaining
ISi terms are obtained through the proper permutation of the
fi(·)’s arguments x(ik ), k = 1, 2, . . . , n in (18). This signifi-
cantly reduces P(j)out computational complexity in n regardless
of the channel envelope statistics, i.e., no matter what pdf the
random variables hi, i = 1, 2, . . . , n, obey to.
Once P(j)out has been obtained, the sum data rate that

power-domain NOMA achieves is evaluated as:

RNOMA =
n∑
j=1

R̂(j) ·
(
1− P(j)out

)
. (20)

B. P(j )
out APPROXIMATION FOR j ≥ 2

The previous development highlighted how to reduce the
complexity that hinders behind the exact analytical evaluation
of the outage probability P(j)out , j = 1, 2, . . . , n. The approach
turns out particularly effective when evaluating P(1)out . When
j ≥ 2, the difficulty in evaluating P(j)out has also to be ascribed
to an increasing complexity of the integration domain Dj
in (11), as well as to the dependency among the events E1, E2,
. . ., Ej. To alleviate the computational burden, this subsection
explores the following approximation to P(j)out , j ≥ 2:

P(j)out ≈ 1−
j∏

k=1

P{Ek}, j ≥ 2, (21)

that holds under the assumption that the random events Ek ,
k = 1, 2, . . . , n, be weakly dependent. To the authors’
knowledge, there is no general result in the vast literature
on ordered statistics that come to help in corroborating the
above approximation. It has however been employed before,
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e.g., in [16], [19], [20]. In this work, we follow the same
approach, and a posteriori demonstrate that it holds.

Let us begin considering the case of n = 2 UEs. In addition
to P(1)out , only P

(2)
out , the probability that the receiver fails to

decode the second strongest signal, has to be determined.
If we recall (7) and (9), P(2)out specializes to

P(2)out ≈ 1− P
{

X(1)
X(2) + σ 2 ≥ γ̂1

}
· P
{
X(2)
σ 2 ≥ γ̂2

}
; (22)

it is easy to recognize that the first term in the product on
the right-hand side of (22) coincides with 1 − P(1)out . More-
over, indicating by G(2)(·) the Cumulative Distribution Func-
tion (CDF) of the random variable X(2), (22) is equivalently
re-written as

P(2)out ≈ 1−
(
1− P(1)out

)
·

(
1− G(2)(γ̂2σ 2)

)
. (23)

With no loss in generality, let the unordered random vari-
ables Xi, i = 1, 2,, . . ., n, be numbered in accordance to
the descending order of their mean received powers, so that
X1 > X2 > . . . > Xn. Moreover, let us assume that
the random variable δi measuring the spacing between Xi
and Xi−1, δi = |Xi − Xi−1|, i = 2, . . . , n, takes on large
values with probability close to 1. In the scenarios where
uplink NOMA is profitably employed, such approximation
is verified, i.e., the spacing δi is sufficiently wide; as a matter
of fact, this is the condition that allows to better discriminate
among simultaneously received signals. Given this assump-
tion holds, observe that it is possible to leverage upon a further
approximation, namely,G(2)(·) that appears in (23) is replaced
by G2(·), the CDF of the unordered random variable X2. This
leads to

P(2)out ≈ 1−
(
1− P(1)out

)
·

(
1− G2(γ̂2σ 2)

)
(24)

that represents the final, approximated P(2)out expression when
n = 2.

When n = 3 UEs are present, P(2)out and also P
(3)
out have to be

determined. The probability P(2)out modifies in

P(2)out ≈ 1− P
{

X(1)
X(2) + X(3) + σ 2 ≥ γ̂1

}
·P
{

X(2)
X(3) + σ 2 ≥ γ̂2

}
, (25)

and denoting by P(1)out2,3 the probability P
{

X(2)
X(3)+σ 2

≥ γ̂2

}
,

then P(2)out is expressed as

P(2)out ≈ 1−
(
1− P(1)out

)
·

(
1− P(1)out2,3

)
(26)

As regards P(3)out , the same approximation leveraged in (24)
leads to

P(3)out ≈ 1−
(
1− P(1)out

)
·

(
1− P(1)out2,3

)
·

(
1− G3(γ̂3σ 2)

)
,

(27)

G3(·) being the CDF of the unordered random variable X3.
When an arbitrary number n of UEs is considered, the

approximated expression of P(j)out , j ≤ n, is provided by (28),

as shown at the bottom of the page, where P(1)out h+1 ,h+2 ,... ,n is

defined as P
{

X(h+1)
X(h+2)+...+X(n)

≤ γ̂h+1

}
, and Gn(·) is the CDF

of the n-th random variable Xn, i.e., the CDF of the power
received from the most distant user from the base station.

Last expression is illuminating, as it reveals that: (i) the
outage probability P(j)out , j ≥ 2, depends on P(1)out , the proba-
bility that NOMA fails in the presence of the same number
of users; (ii) moreover, P(j)out can be readily computed, given
the expression of P(1)out in the presence of n, n − 1, . . . ,
n− j+1 users is known. Finally, observe that the expressions
we have obtained can be employed when different fading
conditions are examined.

The Numerical Results highlight that it is possible to rely
upon the proposed approximation of P(j)out , j ≥ 2, in several
meaningful settings. To the authors’ knowledge, there is how-
ever no means to conclude whether (28) provides an upper or
lower bound to the outage.

When Rayleigh fading is considered, next Section reports
the exact analytical expression of P(1)out derived in the
Appendix, and the closed-form approximation of P(j)out ,
j ≥ 2, for an arbitrary number of simultaneously transmitting
UEs. When shadowing is also introduced, the closed-form
approximation of P(j)out is provided for j ≥ 1.

III. FADING MODELS
A. RAYLEIGH FADING
When the presence of Rayleigh fading is assumed, the prob-
ability density function (pdf) of the received signal power Xi
is exponential:

fi(xi) =
1

X i
exp

(
−xi
X i

)
(29)

with mean X i,

X i = pt,i · kpD
−α
i , (30)

kp being a constant that depends on the operating frequency
and Di the distance between UEi and the base station.

P(j)out ≈

 1−
(
1− P(1)out

)
·
∏j−1

h=1

(
1− P(1)out h+1, h+2,... ,n

)
j < n

1−
(
1− P(1)out

)
·
∏n−1

h=1

(
1− P(1)out h+1, h+2,... ,n

)
·
(
1− Gn(γ̂nσ 2)

)
j = n

(28)
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In Appendix A, it is proved that when γ̂1 ≥ 1, for an
arbitrary number of users n, P(1)out obeys the expression:

P(1)out = 1−
n∑

k=1

exp
(
−γ̂1σ

2

X k

)
n∏
i=1
i6=k

(
1+

X i
X k
γ̂1

) (31)

that reveals what limits NOMA faces, if the number n of
simultaneously active users is increased from 2 to higher
values.

In turn, taking advantage of (31), the fading-independent
approximation of P(j)out provided by (28), j ≥ 2, specializes
to (32), as shown at the bottom of the page.

The constraint on γ̂1 deserves a careful remark: it is the
authors’ belief that it does not represent a limiting factor,
rather, a fairly widespread requirement in upcoming settings.
As an example, high-end industrial IoT use cases are expected
to require conspicuous data rates, exceeding the system avail-
able bandwidth, to support video-assisted services ranging
from process monitoring to augmented video-reality [2].

B. RAYLEIGH-LOGNORMAL SHADOWED FADING
When the envelope of the received signal is subject to both
Rayleigh fading and lognormal shadowing, the Xi pdf is

fi(xi) =
∫
+∞

0

1
x
exp

(
−xi
x

)
1

√
2π σLh x

× exp

− (ln(x)− µi)2
2σ 2L
h2

 dx (33)

where σL is the standard deviation of the Gaussian random
variable modeling lognormal shadowing in dB, µi depends
on the distance attenuation law, µi = ln(pt,i · kpD

−α
i ), and

h = 10
ln(10) . In our analysis, σL is assumed to be the same for

all signals.
An additional hurdle is present here, because of the inte-

gral in (33). We therefore propose an approximation to (33),
exploiting the approach put forth by Holtzman in [26].

According to [26], given a function ψ(θ ) of a Gaussian
random variable θ with mean µθ and variance σ 2

θ , the expec-
tation E [ψ(θ )] can be approximated by

E [ψ(θ )] ≈
2
3
ψ(µθ )+

1
6
ψ
(
µθ +

√
3σθ

)
+
1
6
ψ
(
µθ −

√
3σθ

)
. (34)

For the examined case, it is observed that the change of
variable

y = h · ln(x) (35)

that is, x = exp
( y
h

)
, leads to rewrite (33) in the form

fi(xi) =
∫
+∞

−∞

1

exp
( y
h

) exp( −xi
exp

( y
h

)) 1
√
2πσL

× exp

(
−
(y− µi)2

2σ 2
L

)
dy (36)

that can therefore be approximated as:

fi(xi) ≈
3∑

k=1

ak
bi,k

exp
(
−xi
bi,k

)
(37)

where a1= 2
3 , a2=a3= 1

6 , bi,1 = exp
(
µi
h

)
, bi,2 =

exp
(
(µi+
√
3σL )

h

)
and bi,3 = exp

(
(µi−
√
3σL )

h

)
.

This linear combination of exponential functions allows to
leverage the results obtained in the previous case of Rayleigh
fading.

Hence, when lognormal shadowing is added, for n super-
imposed signals P(1)out is approximated by

P(1)out ≈ 1−
3∑

k1=1

ak1 · . . . ·
3∑

kn−1=1

akn−1

3∑
kn=1

akn

P(j)out ≈



1−
∏j

h=1


∑n

k=h

exp
(
−γ̂hσ

2

Xk

)
n∏
i=h
i6=k

(
1+

X i
X k
γ̂h

)


j < n

1−
∏n

h=1


∑n

k=h

exp
(
−γ̂hσ

2

Xk

)
n∏
i=h
i6=k

(
1+

X i
X k
γ̂h

)

· exp

(
−
γ̂nσ

2

Xn

)
j = n

(32)
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×


n∑
i=1

exp
(
−γ̂1σ

2

bi,ki

)
n∏
j=1
j 6=i

(
1+

bj,kj
bi,ki

γ̂1

)


(38)

and P(j)out , j ≥ 2, follows from (28) and it is approximated by
(39), as shown at the bottom of the page.

In next Section, the excellent accuracy of the approxima-
tions in (32), (38) and (39) will be demonstrated for several
choices of system parameters.

IV. NUMERICAL RESULTS
An exemplary set of numerical results is reported next,
in order to highlight the accuracy of the proposed analyt-
ical approaches, as well as to provide useful insights on
the uplink performance of power-domain NOMA, when the
dynamic-ordered SIC receiver is employed.

The results have been obtained for the following configu-
ration: in (6), the target data rate R̂(j) is set to 1.2 bits/s/Hz, ∀j,

j = 1, 2, . . . , n; in (30), the kp constant is
(

c
4π fc

)
, where c is

the speed of light and omnidirectional antennas are assumed.
The operating frequency is fc = 2GHz, the pathloss exponent
is α = 2 and the cell radius is R = 1000 m. As regards
lognormal shadowing, unless otherwise stated, in (33) σL =
4 dB. To improve the base station capability to recover the
signals coming from distinct UEs, the transmitted powers are
set so as to attribute higher power levels to UEs closer to the
base station. Unless otherwise stated, the UEs location along
the cell radius is the one illustrated in Fig. 1. Namely, the
ratio between the transmitted powers of UEi and UEj, with
distances Di and Dj from the base, Di < Dj, is set to

pt,i
pt,j
= 10

(j−i)1
10 , (40)

and the power back-off step is 1 = 6 dB.

FIGURE 1. Users location along the cell radius when n = 2, 3, 5.

In the first set of figures, the outage probabilities are
reported as a function of the largest average received Signal-
to-Noise Ratio (SNR). Recalling that the UEs are indexed so
that X1 > X2 > · · · > Xn, it follows that SNR = X1/σ

2.
In other words, as the power law assignment privileges users
that are closer to the base, the SNR is the average received
signal-to-noise ratio of the UE that is the nearest to the base
station.

When Rayleigh fading is considered, Fig. 2 shows P(1)out as
a function of the SNR, if n = 2, 3, 5 users are simultaneously
transmitting. As indicated in Fig. 2, when n = 2, the distance
D1 of UE1 from the base is 0.2R and the distance D2 of
UE2 from it is R; when n = 3, D1 = 0.2R, D2 = 0.6R and
D3 = R; when n = 5, D1 = 0.2R, D2 = 0.4R, D3 = 0.6R,
D4 = 0.8R and D5 = R. Solid lines refer to the exact ana-
lytical evaluation, markers to P(1)out values determined through
Monte Carlo simulation, considering 105 samples for each
plotted value. The perfect match between the analytical and
the simulation results confirms the correctness of the exact
closed-form of P(1)out provided by (31). The figure also indi-
cates thatP(1)out is close to 1when the SNR is smaller than 5 dB,
regardless of n. As a matter of fact, in this low SNR region,
the achievable data rate of the strongest user is limited by the
weak level of the received signal, rather than by the presence

P(j)out ≈



1−
∏j

h=1


∑3

kh=1 akh · . . . ·
∑3

kn−1=1 akn−1
∑3

kn=1 akn ·


∑n

i=h

exp
(
−γ̂hσ

2

bi,ki

)
n∏
j=h
j6=i

(
1+

bj,kj
bi,ki

γ̂h+1

)



j < n

1−
∏n

h=1


∑3

kh=1 akh · . . . ·
∑3

kn−1=1 akn−1
∑3

kn=1 akn ·


∑n

i=h

exp
(
−γ̂hσ

2

bi,ki

)
n∏
j=h
j6=i

(
1+

bj,kj
bi,ki

γ̂h

)



·
∑3

k=1 akexp
(
−
γ̂nσ

2

bi,k

)
j = n

(39)
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FIGURE 2. Rayleigh fading: P(1)
out as a function of the SNR, n = 2, 3, 5.

FIGURE 3. Rayleigh fading and log-normal shadowing: P(1)
out as a function

of the SNR, n = 2, 3, 5.

of simultaneously transmitting users. As the SNR increases
above 10 dB, the impact of a larger number of interfering
users gradually becomes more evident. Yet, observe that for
n = 5, P(1)out is always below 1% for all SNR values in the
[15,+∞] range.
Fig. 3 shows P(1)out as a function of the SNR, when the

received signal is subject to both Rayleigh fading and log-
normal shadowing, and it reveals that the closed-form in (38)
is an excellent approximation to the exact P(1)out computed
via simulation. In this scenario too, the impact on P(1)out of
a larger number of users can be appreciated only for SNR
values greater than 10 dB. The relative position of the curves
is the same as observed in Fig. 2. However, P(1)out takes on
higher values than in the presence of Rayleigh fading only.
For instance, when SNR = 30 dB, for n = 2 P(1)out increases
from 7×10−3 determined in the presence of Rayleigh fading

FIGURE 4. P(1)
out , Rayleigh fading and Rayleigh plus lognormal, n = 3.

to 1.4 × 10−2 when lognormal shadowing is also taken into
account, and raises from 4.7× 10−2 to 6.9× 10−2 for n = 5.
This indicates that the shadowing plays a non-negligible role
in the outage probability evaluation.

To better understand the influence of lognormal shad-
owing, Fig. 4 compares P(1)out in the presence of Rayleigh
fading against P(1)out in the additional presence of lognormal
shadowing, when n = 3 and three different values of σL ,
namely, 2, 4 and 6 dB are considered. The black lowest
curve and the circle markers refer to the benchmark case of
Rayleigh fading; the red, blue and green curves, paired with
the square, triangle and diamond markers, respectively, refer
to the Rayleigh plus lognormal case. The results corroborate
what was previously anticipated, quantifying the remarkable
impact of the shadowing on P(1)out for increasing values of
σL . For instance, when σL = 6 dB and SNR > 30 dB,
P(1)out is 2.4 times larger than for the case of Rayleigh fading
only. Also note the tightness of the approximation provided
by (38): here too, the results obtained by simulation are nearly
undistinguishable from the analytical outcomes, no matter
what σL value is examined.

Next, Fig. 5 and 5b report P(1)out , P
(2)
out and P

(3)
out for the case

of Rayleigh fading and Rayleigh plus lognormal shadowing,
respectively, when n = 3. As regards P(2)out and P

(3)
out , these

figure show the impressive accuracy of the approximation
proposed in Section III and detailed in eqs. (32) and (39).
Furthermore, they reveal that P(2)out and P

(3)
out take on signifi-

cantly high values, with and without lognormal shadowing.
As expected, P(3)out takes on the worst values, as the signal
coming from the third strongest user can be decoded only if
both the second and the first strongest signals have already
been decoded.

When considering both Rayleigh fading and lognormal
shadowing, an alternative view is provided by Fig.6, that
shows P(1)out , P

(2)
out and P

(3)
out as a function of D2/R, the normal-

ized distance of UE2 from the base, when UE1 and UE3 dis-
tances are D1 = 0.2R and D3 = R, respectively. This figure
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FIGURE 5. Outage probability vs SNR, n = 3.

indicates that the values of P(2)out and P
(3)
out lie in the range of

a few percentage points; equivalently stated, approximately
in 90% of the cases it is possible to support 2 simultaneous
communications (and in 80% of the cases even 3). If the
involved UEs all require maximum reliability, this is unac-
ceptable. Yet, resorting to power-domain NOMA becomes
truly interesting in alternative settings: for instance, whenever
communication redundancy can be introduced without an
excessive overhead, as it happens when a modest number of
packet re-transmissions are introduced and packets exhibit a
modest size. The figure also shows that P(2)out and P

(3)
out minima

lie at D2 = 0.4R and that they are not so critical, revealing
that the location of the UEs does not have to be identified
with extreme accuracy. Also observe that the tightness of the
proposed approximation in evaluating P(3)out slightly worsens
as D2 approaches D3; this happens since the spacing δ3 no
longer verifies the assumption of taking on large values with
probability close to 1.

FIGURE 6. Outage probability as a function of D2/R, n = 3, SNR = 30 dB.

FIGURE 7. Sum data rate of OMA and NOMA as a function of SNR,
Rayleigh and lognormal shadowing.

Last, Fig. 7 displays RNOMA, the sum data rate of
power-domain NOMA of (20), as a function of the SNR in
the simultaneous presence of Rayleigh fading and lognormal
shadowing, when n = 2 and n = 3, and compares it against
the OMA data rate. The latter scheme is examined under the
hypothesis that the signal-to-noise ratio of the OMA user
coincides with SNR, the signal-to-noise ratio of the NOMA
UE that is the nearest to the base station. Here too, the
accuracy of the proposed approximation is striking. The gain
of NOMA over OMA becomes more and more evident for
increasing SNR values. Moreover, at high SNR regimes the
NOMA system with n = 3 users achieves a sum data rate
significantly greater than 2.4 bits/s/Hz, the maximum data
rate NOMA attains when n = 2.

V. CONCLUSION
This work has proposed a novel analytical approach to
evaluate the outage probabilities of uplink power-domain
NOMA, when a dynamic-ordered SIC receiver is employed.
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The method has been employed in the presence of Rayleigh
fading, and Rayleigh plus lognormal shadowing. In the for-
mer setting, it has allowed to determine the probability that
NOMA fails through an exact analytical expression, for
a generic number of superimposed signals; in the second
examined scenario, such probability has been obtained in
closed-form via an excellent approximation. Moreover, the
current study has put forth an approximated expression of
the probability that the SIC receiver does not succeed in
decoding the second, third, n-th strongest user. Monte Carlo
simulations have demonstrated the accuracy of the results
obtained through the proposed approximations, that clearly
quantify the effects of an increasing number of simultaneous
users on system performance. The analysis has also disclosed
to what extent lognormal shadowing affects NOMAbehavior,
revealing that its presence significantly deteriorates perfor-
mance with respect to the case of Rayleigh fading only.

APPENDIX A
DERIVATION OF P (1)

out FOR AN ARBITRARY NUMBER OF
USERS
In the presence of Rayleigh fading, the outage probability
P(1)out is evaluated beginning with the special case n = 2.
From (19), P(1)out specializes to

P(1)out = 1− (IS1 + IS2 ) (41)

where S1 = {1, 2}, S2 = {2, 1},

IS1 =
∫∫

D1

f1(x(1))f2(x(2))dx(2)dx(1)

=

∫∫
D1

1

X1
exp

(
−
x(1)
X1

)
·
1

X2
exp

(
−
x(2)
X2

)
dx(2)dx(1)

(42)

and D1 is

D1 =

{
X(1) ≥ γ̂1 ·

(
X(2) + σ 2

)
X(1) ≥ X(2) ≥ 0

. (43)

When the target data rate of the strongest user γ̂1 is at least
equal to 1 bit/s/Hz, solving the integral in (42) gives

IS1 =
exp

(
−γ̂1σ

2

X1

)
1+ X2

X1
γ̂1

. (44)

From (44), IS2 is readily determined as

IS2 =
exp

(
−γ̂1σ

2

X2

)
1+ X1

X2
γ̂1

(45)

and P(1)out follows:

P(1)out = 1−

exp
(
−γ̂1σ

2

X1

)
1+ X2

X1
γ̂1

+

exp
(
−γ̂1σ

2

X2

)
1+ X1

X2
γ̂1

 . (46)

When n = 3, P(1)out exhibits 3! distinct contributions. The
first of them, IS1 , S1 = {1, 2, 3}, is

IS1 =
∫∫∫

D1

f1(x(1))f2(x(2))f3(x(3)) dx(3)dx(2)dx(1) (47)

where D1 is identified by the conditions

D1 =

{
X(1) ≥ γ̂1 ·

(
X(2) + X(3) + σ 2

)
X(1) ≥ X(2) ≥ X(3) ≥ 0.

(48)

So,

IS1 =
∫∫∫

D1

p123(x(1), x(2), x(3)) dx(3)dx(2)dx(1)

=

∫∫∫
D1

1

X1
exp

(
−
x(1)
X1

)
·
1

X2
exp

(
−
x(2)
X2

)
·
1

X3
exp

(
−
x(3)
X3

)
× dx(3)dx(2)dx(1). (49)

After a few lengthy steps, last integral is solved and leads to
the following result

IS1 =
exp

(
−γ̂1σ

2

X1

)
X1

2
X2

(X1 + X2γ̂1)(X1X2 + X1X3γ̂1 + X2X3γ̂1 + X2X3γ̂1
2)
(50)

that more aptly is written as

IS1 =
exp

(
−γ̂1σ

2

X1

)
(1+ X2

X1
γ̂1)(1+

X3
X2
γ̂1 +

X3
X1
γ̂1(γ̂1 + 1))

. (51)

Once IS1 is determined, all the remaining contributions can
be obtained permuting over SN . On purpose, the set S2 =
{1, 3.2} is considered next, which provides the result

IS2 =
exp

(
−γ̂1σ

2

X1

)
X
2
1X3

(X1 + X3 · γ̂1)(X1X2 + X1(X3 + 2X2X3γ̂1))
.

(52)

Observe that, when the sum IS1 + IS2 is computed, it gives

C1 = IS1 + IS2

=

exp
(
−γ̂1σ

2

X1

)
X
2
1

(X1 + X2γ̂1)(X1 + X3γ̂1)
=

exp
(
−γ̂1σ

2

X1

)
(1+ X2

X1
γ̂1)(1+

X3
X1
γ̂1)
.

(53)

If we now introduce the sets S3 = {2, 1, 3} and S4 =
{3, 1, 2}, permuting X1,X2 and X3 in (51) IS3 and IS4 are also
determined. Their sum gives

C2 = IS3 + IS4

=

exp
(
−γ̂1σ

2

X2

)
X
2
2

(X2 + X1γ̂1)(X2 + X3γ̂1)
=

exp
(
−γ̂1σ

2

X2

)
(1+ X1

X2
γ̂1)(1+

X3
X2
γ̂1)
.

(54)
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IS1 = exp
(
−γ̂1σ

2

X1

)
×

X
3
1X

2
2X3

(X1 + X2γ̂1)(X1X2 + X1X3 + 2X2X3γ̂1)(X1X2X3 + X1X2X4 + 3X2X3X4γ̂1)
. (59)

The same applies to S5 = {3, 2, 1} and S6 = {2, 3, 1},
whose sum C3 is

C3 = IS5 + IS6

=

exp
(
−γ̂1σ

2

X3

)
X
2
3

(X3 + X1γ̂1)(X3 + X2γ̂1)
=

exp
(
−γ̂1σ

2

X3

)
(1+ X1

X3
γ̂1)(1+

X2
X3
γ̂1)
.

(55)

Therefore, in the presence of n = 3 users and under the
previous hypothesis γ̂1 ≥ 1, P(1)out is amenable to the writing

P(1)out = 1−
∑
Si∈SN

ISi = 1−
3∑

k=1

Ck =

= 1−

 exp
(
−γ̂1σ

2

X1

)
(1+ X2

X1
γ̂1)(1+

X3
X1
γ̂1)
+

exp
(
−γ̂1σ

2

X2

)
(1+ X1

X2
γ̂1)(1+

X3
X2
γ̂1)

+

exp
(
−γ̂1σ

2

X3

)
(1+ X1

X3
γ̂1)(1+

X2
X3
0̂)

 . (56)

When the case n = 4 is examined, 4! = 24 terms
contribute to P(1)out ; yet, it is sufficient to compute the term
that corresponds to the S1 = {1, 2, 3, 4} set, that is expressed
by

IS1 =
∫∫∫∫

D1

f1(x(1))f2( x(2))f3(x(3))f4(x(4))

×dx(4)dx(3)dx(2)dx(1) (57)

D1 now being given by

D1 =

{
X(1) ≥ γ̂1 ·

(
X(2) + X(3) + X(4) + σ 2

)
X(1) ≥ X(2) ≥ X(3) ≥ X(4) ≥ 0

. (58)

Here too, the assumption of exponential pdf allows to
solve (57) in closed-form, resulting in (59), as shown at the
top of the page.

At first sight, last expressionmight look unmanageable and
hinder P(1)out determination. Yet, in analogy with the previous
n = 3 case, the contribution in (59) has to be grouped
with other conveniently identified terms, namely, those that
correspond to the sets S2 = {1, 2, 4, 3}, S3 = {1, 3, 2, 4},
S4 = {1, 3, 4, 2}, S5 = {1, 4, 2, 3} and S6 = {1, 4, 3, 2},
leading to the partial sum

C1 =

6∑
i=1

Si =
exp

(
−
γ̂1σ

2

X1

)
(1+ X2

X1
γ̂1)(1+

X3
X1
γ̂1)(1+

X4
X1
γ̂1)
. (60)

In an analogousmanner, 3more partial sums are computed,
so that altogether 4 terms are identified,Ck , k = 1, 2, 3, 4, the

generic Ck being

Ck =
exp

(
−
γ̂1σ

2

X k

)
4∏
i=1
i 6=k

(
1+ X i

X k
0̂
) (61)

and P(1)out is then computed as

P(1)out = 1−
4∑

k=1

Ck . (62)

For an arbitrary number n of superimposed signals, n partial
sums, each with (n − 1)! elements, have to be determined.
By induction, the generic sum Ck turns out to be

Ck =
exp

(
−
γ̂1σ

2

X k

)
n∏
i=1
i 6=k

(1+ X i
X k
· γ̂1)

, (63)

so that P(1)out , the probability that power-domain NOMA can-
not guarantee the target data rate to the strongest user,
is finally written as

P(1)out = 1−
n∑

k=1

Ck = 1−
n∑

k=1

exp
(
−γ̂1σ

2

X k

)
n∏
i=1
i6=k

(
1+

X i
X k
γ̂1

) . (64)

under the condition γ̂1 ≥ 1 bits/s/Hz.
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